In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.
Metasurfaces offered great opportunities to control electromagnetic (EM) waves, but currently available meta-devices typically work either in pure reflection or pure transmission mode, leaving half of EM space completely unexplored. Here, we propose a new type of metasurface, composed by specifically designed meta-atoms with polarization-dependent transmission and reflection properties, to efficiently manipulate EM waves in the full space. As a proof of concept, three microwave meta-devices are designed, fabricated and experimentally characterized. The first two can bend or focus EM waves at different sides (i.e., transmission/reflection sides) of the metasurfaces depending on the incident polarization, while the third one changes from a wave bender for reflected wave to a focusing lens for transmitted wave as the excitation polarization is rotated, with all these functionalities exhibiting very high efficiencies (in the range of 85%-91%) and total thickness ~/8 . Our findings significantly expand the capabilities of metasurfaces in controlling EM waves, and can stimulate high-performance multi-functional meta-devices facing more challenging and diversified application demands.
Achieving multiple diversified functionalities in a single flat device is crucial for electromagnetic (EM) integration, but available efforts suffer the issues of device thickness, low efficiency, and restricted functionalities. Here, a general strategy to design high‐efficiency bifunctional devices based on metasurfaces composed by anisotropic meta‐atoms with polarization‐dependent phase responses is described. Based on the derived general criterions, two bifunctional metadevices, working in reflection and transmission modes, respectively, that can realize two distinct functionalities with very high efficiencies (≈90% in reflection geometry and ≈72% in transmission one) are designed and fabricated. Microwave experiments, including both far‐field and near‐field characterizations, are performed to demonstrate the predicted effects, which are in excellent agreement with numerical simulations. The findings in this study can motivate the realizations of high‐performance bifunctional metadevices in other frequency domains and with different functionalities, which are of crucial importance in EM integration.
Diffusive scatterings of electromagnetic (EM) waves by a thin screen are important in many applications, but available approaches cannot ensure uniform angular distributions of low-intensity scatterings without time-consuming optimizations. Here, we propose a robust and deterministic approach to design metasurfaces to achieve polarization-independent diffusive scatterings of EM waves within an ultrabroad frequency band and for wide-range of incident angles. Our key idea is to use high-efficiency Pancharatnam−Berry meta-atoms to form subarrays exhibiting focusing reflection-phase profiles, that can guarantee nearly uniform diffusive scatterings for arbitrarily polarized EM waves. As an illustration, we design and fabricate two metasurfaces and experimentally characterize their wave-diffusion properties in C, X, and Ku bands. Theoretical, numerical and experimental results demonstrate that our approach can diffuse the incident energy much more uniformly than available approaches based on the uniform-phase subarrays, thanks to the intrinsic wave-diffusion capabilities of the focusing-phase subarrays. The −7 dB fractional bandwidth is measured as 88.3% and the diffusive scattering behavior can be preserved up to 60°off-normal incidence irrespective of incident polarizations. Our approach, simple and robust, can help realize stealth applications under bistatic detections.
Nanocrystalline diamond nanomembranes with thinning-reduced flexural rigidities can be shaped into various 3D mesostructures, such as tubes, jagged ribbons, nested tubes, helices, and nested rings. Microscale helical diamond architectures are formed by controlled debonding in agreement with finite-element simulation results. Rolled-up diamond tubular microcavities exhibit pronounced defect-related photoluminescence with whispering-gallery-mode resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.