In this study, the electrochemical behavior of an Al–air battery is improved by mixing 6‐thioguanine into 4.0 M NaOH electrolyte. The electrochemical performance of the Al electrodes is analyzed using potentiodynamic polarization, potentiostatic oxidation, and electrochemical impedance spectroscopy. The surface morphology of the Al electrodes after discharging for 1,000 s is characterized using scanning electron microscopy coupled with X‐ray elemental mapping for Al, O, C, N, and S. Furthermore, the utilization efficiencies of these samples are also determined. The results show that the corrosion resistance of the Al electrodes initially increases and then decreases with an increase in 6‐thioguanine concentration. The presence of 6‐thioguanine enhances the corrosion resistance to the maximum, with a corrosion current density (Icorr) of 6.170 mA/cm2, and corrosion inhibition efficiency (η) of 36.56%, at 0.5 mM of 6‐thioguanine.
There is little available research on how different transition metal oxides influence the behavior of B4C-based ceramics, especially for Ta2O5 and Nb2O5. B4C-MeB2 (Me = Ti, Zr, Nb, and Ta) multiphase ceramic samples were prepared via in situ pressureless sintering at 2250 °C, involving the mixing of B4C and MeOx powders, namely TiO2, ZrO2, Nb2O5, and Ta2O5. The phase constituents, microstructures, and mechanical properties of the samples were tested. The results indicated that different transition metal elements had different effects on the ceramic matrix, as verified through a comparative analysis. Additionally, the doped WC impurity during the ball milling process led to the production of (Me, W)B2 and W2B5, which brought about changes in morphology and performance. In this study, the Ta2O5-added sample exhibited the best performance, with elastic modulus, flexural strength, Vickers hardness, and fracture toughness values of 312.0 GPa, 16.3 GPa, 313.0 MPa, and 6.08 MPa·m1/2, respectively. The comprehensive mechanical properties were better than the reported values when the mass fraction of the second phase was around five percent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.