Background: Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. Results: The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl coenzyme A. The cellular concentration of hydrogen peroxide (H 2 O 2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive elementbinding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. Conclusions: Our findings reveal that Arabidopsis exhibits different response patterns under heat shock versus prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.
Plants have evolved mechanisms of stress tolerance responses to heat stress. However, little is known about metabolic responses to heat stress in trees. In this study, we exposed Populus tomentosa Carr. to control (25 °C) and heat stress (45 °C) treatments and analyzed the metabolic and transcriptomic effects. Heat stress increased the cellular concentration of H2O2 and the activities of antioxidant enzymes. The levels of proline, raffinose, and melibiose were increased by heat stress, whereas those of pyruvate, fumarate, and myo-inositol were decreased. The expression levels of most genes (PSB27, PSB28, LHCA5, PETB, and PETC) related to the light-harvesting complexes and photosynthetic electron transport system were downregulated by heat stress. Association analysis between key genes and altered metabolites indicated that glycolysis was enhanced, whereas the tricarboxylic acid (TCA) cycle was suppressed. The inositol phosphate; galactose; valine, leucine, and isoleucine; and arginine and proline metabolic pathways were significantly affected by heat stress. In addition, several transcription factors, including HSFA2, HSFA3, HSFA9, HSF4, MYB27, MYB4R1, and bZIP60 were upregulated, whereas WRKY13 and WRKY50 were downregulated by heat stress. Interestingly, under heat stress, the expression of DREB1, DREB2, DREB2E, and DREB5 was dramatically upregulated at 12 h. Our results suggest that proline, raffinose, melibiose, and several genes (e.g., PSB27, LHCA5, and PETB) and transcription factors (e.g., HSFAs and DREBs) are involved in the response to heat stress in P. tomentosa.
The shoot apical meristem (SAM) is a crucial tissue located at the tops of plants which can continually grow and differentiate to develop into all aboveground parts. SAM development is controlled by a series of complicated molecular regulation networks, among which microRNAs (miRNAs) and their target genes play key roles. However, little is known about these miRNAs in woody plants. In this study, we used small RNA (sRNA) sequencing to build four libraries derived from shoot tips and mature leaf tissues of Populus tomentosa, and identified 99 known miRNA families. In addition, 193 known miRNAs, including phytohormone-, developmental-, and cellular process-related miRNAs, showed significant differential expression. Interestingly, quantitative real-time reverse transcription polymerase chain reaction (PCR) analysis of miR172, miR164, and miR393 expression showed marked changes in expression patterns during the development of shoot tips. The target genes of these miRNAs were involved in the regulation of hormone responses and stem cell function. In particular, the miR172 target APETALA2 (AP2), involved in the maintenance of stem cells in the shoot apex, was expressed specifically during the initial active stage of development. These findings provide new insights into the regulatory mechanisms of miRNAs involved in SAM development and differentiation in tree species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.