Internalization of nanoparticles by biomembranes is critical for nanomedicine development; however, this process, especially its dynamics aspect, is still not well understood. Using coarse-grained molecular modeling combined with free energy calculations, we studied the endocytic process for spherical, prolate and oblate particles with varied aspect ratios, volumes and interaction strengths. Rich dynamic wrapping behaviors have been observed. Small ellipsoids follow a pathway that includes particle laying-down, membrane invagination and wrapping, and then disruption of the membrane neck. However, the step of particle laying-down is skipped for large ellipsoids. Because of the significantly decreased local mean curvature at the side edge (oblate ellipsoid) or tips (prolate ellipsoid), the rotation is less favorable for particles with larger volume. Given the existence of a local minimum and an energy barrier during the endocytic process presented by our free energy calculations, the oblate particle provides longer endocytic time than the corresponding prolate particle. For large particles, the free energy surfaces are smooth, with no local minimum. When we increase the interaction strength between the membrane and the particle, the endocytic process is greatly affected. Moreover, a "sandwiched structure", in which the particle lays between the two membrane layers, was observed for both prolate and oblate particles.
Nitric oxide (NO) serves as a key regulator of many physiological processes and as a potent therapeutic agent. The local delivery of NO is important to achieve target therapeutic outcomes due to the toxicity of NO at high concentrations. Although light stimulus represents a non‐invasive tool with spatiotemporal precision to mediate NO release, many photoresponsive NO‐releasing molecules can only respond to ultraviolet (UV) or near‐UV visible light with low penetration and high phototoxicity. We report that coumarin‐based NO donors with maximal absorbances at 328 nm can be activated under (deep) red‐light (630 or 700 nm) irradiation in the presence of palladium(II) tetraphenyltetrabenzoporphyrin, enabling stoichiometric and self‐reporting NO release with a photolysis quantum yield of 8 % via photoredox catalysis. This NO‐releasing platform with ciprofloxacin loading can eradicate Pseudomonas aeruginosa biofilm in vitro and treat cutaneous abscesses in vivo.
Programmable and algorithmic behaviors of DNA molecules allow one to control the structures of DNA-assembled materials with nanometer precision and to construct complex networks with digital and analog behaviors. Here we developed a way of integrating a DNA-strand-displacement circuit with self-assembly of spherical nucleic acids, wherein a single DNA strand was used to initiate and catalyze the operation of upstream circuits to release a single strand that subsequently triggers self-assembly of spherical nucleic acids in downstream circuits, realizing a programmable kinetic control of self-assembly of spherical nucleic acids. Through utilizing this method, single-nucleotide polymorphisms or indels occurring at different positions of a sequence of oligonucleotide were unambiguously discriminated. We provide here a sophisticated way of combining the DNA-strand-displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, which may find broad potential applications in the fabrication of a wide range of complex multicomponent devices and architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.