Suckling piglets were used to investigate the response of colonic mucosa-associated microbiota composition, mucosal immune homeostasis, and barrier function to early life galactooligosaccharides (GOS) intervention. Ten milliliter 1 g/ kg body weight GOS solutions and physiological saline solutions were fed to the newborn piglets in the GOS group and in the control (CON) group a week time, respectively. Six piglets from each group were euthanized on day 8 and day 21. GOS piglets had a higher abundance of short-chain fatty acids (SCFAs) producer such as Prevotella, Barnesiella, Parabacteroides, and Unclassified Porphyromonadaceae in colonic mucosa (P < 0.05). In addition, the total SCFAs level in colonic digesta of GOS piglets increased on day 8 (P < 0.05) and day 21 (P = 0.064). Meanwhile, a higher SCFAs concentration in colon of the GOS piglets altered the gene expression of inflammatory cytokines (IL-8 and IL-10) and barrier proteins (ZO-1 and Claudin-1) through regulating the phosphorylation of the NFκB and AMPK signaling pathway. In summary, these results provide important insights and understandings to reveal the relationship between the mucosal microbiota colonization and intestinal function at the early life stage of piglets.
BackgroundMost research on galacto-oligosaccharides (GOS) has mainly focused on their prebiotic effects on the hindgut, but their beneficial effects on the small intestine (SI) have received little attention. Since jejunum is the important place to digest and absorb nutrients efficiently, optimal maturation of the jejunum is necessary for maintaining the high growth rate in the neonate. Therefore, this study investigates the effect of the early intervention with GOS on the intestinal development of the jejunum.MethodsA total of 6 litters of neonatal piglets (10 piglets per litter; Duroc × Landrace × Large White) with an average birth weight of 1.55 ± 0.05 kg received 1 of 2 treatments based on their assignment to either the control (CON) group or the GOS (GOS) group in each litter. Piglets in the GOS group were orally administrated 10 mL of a GOS solution (reaching 1 g GOS/kg body weight) per day from the age of 1 to 7 d; the piglets in the CON group were treated with the same dose of physiological saline. All piglets were weaned on d 21. On d 8 and 21 of the experimental trial, 1 pig per group from each of the 6 litters was euthanized.ResultsThe early intervention with GOS increased the average daily gains in the third week (P < 0.05). Decreased crypt depth was also observed in the jejunum of the piglets on d 21 (P < 0.05). The early intervention with GOS increased the jejunal lactase activity on d 8, maltase activity and sucrase activity on d 21 (P < 0.05). In addition, the early intervention with GOS also facilitated the mRNA expression of Sodium glucose co-transporter 1 (SGLT1) on d 8 and the mRNA expression of Glucose transporter type 2 (GLUT2) on d 21 (P < 0.05). It was further determined that GOS up-regulated the mRNA expression of preproglucagon (GCG), insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor (EGF). GOS also up-regulated the protein expression of glucagon-like peptide-2 (GLP-2) and EGF in the jejunum of the piglets. Furthermore, it was also found that GOS enhanced the protein expression of ZO-1 and occludin on d 8 (P < 0.05), as well as increased the mRNA expression of TGF-β and decrease the mRNA expression of IL-12 (P < 0.05).ConclusionsThese results indicate that GOS have a positive effect on piglet growth performance in addition to decreasing the crypt depth and enhancing functional development in jejunum of suckling piglets.Electronic supplementary materialThe online version of this article (10.1186/s40104-018-0290-9) contains supplementary material, which is available to authorized users.
Galacto-oligosaccharides (GOS), functional oligosaccharides with natural characteristics, are important active substances in milk that play an important role in the development of intestinal microbiota and the immune system of newborns. The intestinal maturation of piglets resembles that of human newborns and infants. Therefore, we used the newborn piglet model to study the effects of early-life GOS intervention. Six litters of neonatal piglets (10 piglets per litter) with the same average birth weight were divided into control (CON) and GOS (GOS) groups in each litter. Piglets in the GOS group were given 10 mL of GOS solution daily during the first week after birth, while piglets in the CON group were given the same dose of physiological saline orally. One pig per group from each litter was euthanized on day 8 and day 21. Results revealed that ileal microbiota composition was significantly enriched in Lactobacillus and unclassified Lactobacillaceae, and reduced in Clostridium sensu stricto on day 8 and day 21 after GOS intervention. Additionally, Escherichia significantly decreased on day 21 following the early-life GOS intervention. Moreover, the content of microbial metabolites, endocrine peptides, and the mRNA expression of anti-inflammatory cytokines and antimicrobial peptides increased in the GOS group. These findings provide guidelines for early prebiotic supplementation for lactating newborns.
Background Galacto-oligosaccharides (GOS) have been shown to modulate the intestinal microbiota of suckling piglets to exert beneficial effects on intestinal function. However, the modulation of intestinal microbiota and intestinal function by GOS in intestinal inflammation injury models has rarely been reported. In this study, we investigated the effects of GOS on the colonic mucosal microbiota composition, barrier function and inflammatory response of lipopolysaccharides (LPS)-challenged suckling piglets. Methods A total of 18 newborn suckling piglets were divided into three groups, the CON group, the LPS-CON group and the LPS-GOS group. Piglets in the LPS-GOS group were orally fed with 1 g/kg body weight of GOS solution every day. On the d 14, piglets in the LPS-CON and LPS-GOS group were challenged intraperitoneally with LPS solution. All piglets were slaughtered 2 h after intraperitoneal injection and sampled. Results We found that the colonic mucosa of LPS-challenged piglets was significantly injured and shedding, while the colonic mucosa of the LPS-GOS group piglets maintained its structure. Moreover, GOS significantly reduced the concentration of malondialdehyde (MDA) and the activity of reactive oxygen species (ROS) in the LPS-challenged suckling piglets, and significantly increased the activity of total antioxidant capacity (T-AOC). GOS significantly increased the relative abundance of norank_f__Muribaculaceae and Romboutsia, and significantly decreased the relative abundance of Alloprevotella, Campylobacter and Helicobacter in the colonic mucosa of LPS-challenged suckling piglets. In addition, GOS increased the concentrations of acetate, butyrate and total short chain fatty acids (SCFAs) in the colonic digesta of LPS-challenged suckling piglets. GOS significantly reduced the concentrations of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and cluster of differentiation 14 (CD14), and the relative mRNA expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) in the LPS-challenged suckling piglets. In addition, GOS significantly reduced the relative mRNA expression of mucin2 (MUC2), and significantly increased the protein expression of Claudin-1 and zonula occluden-1 (ZO-1) in LPS-challenged suckling piglets. Conclusions These results suggested that GOS can modulate the colonic mucosa-associated microbiota composition and improve the intestinal function of LPS-challenged suckling piglets.
Recently, we have proved that the early-life galactooligosaccharides (GOS) intervention could improve the colonic function by altering the bacterial composition in the suckling piglets. However, whether the early-life GOS (ELG) intervention could have a long influence of the colonic microbiota, and the ELG and post-weaning GOS (PWG) combined intervention would have an interaction effect on maintaining colonic health in weaning piglets remain to be explored. Thus in this study, we illustrated the differential effect of ELG and PWG intervention on colonic microbiota and colonic function of weaning piglets. Our results showed that both the ELG and PWG intervention decreased the diarrhea frequency of weaning piglets, while the PWG intervention increased colonic indexes. After 16S rRNA MiSeq sequencing of gut bacteria belonged to colonic niches (mucosa and digesta), the PWG increased the α-diversity of colonic mucosal bacteria was revealed. In addition, we found both the ELG and PWG intervention enriched the abundance of short chain fatty acids (SCFAs) producer in different colonic niches and increased total SCFAs concentrations in colonic digesta. These changes selectively modulated the mRNA expression of pattern recognition receptors and barrier proteins in the colonic mucosa. Of note, the combined effect of ELG and PWG effectively enhanced colonic SCFAs producer enrichment and up-regulated the butyrate concentration. Meanwhile, the gene expression of MyD88-NFκB signaling and the pro-inflammatory cytokines contents were markedly reduced under the combined effect of ELG and PWG. Importance Reducing the disorders of gut ecosystem is an effective way to relieve weaning stresses of piglets and save economic losses in the modern swine industry. To this end, prebiotics were often added in diet during the weaning transition. In present study, we demonstrated that the ELG and PWG intervention had shown different effects on the bacterial composition of different colonic niches and colonic function in the weaning piglets. Especially under the combined effect of ELG and PWG intervention, the gene expression of MyD88-NFκB signaling and the contents of pro-inflammation cytokines decreased with the increasing concentration of butyrate, which is one of the important microbial metabolites in the colon of weaning piglets. These findings further provided new insights into nutritional interventions to alleviate intestinal ecosystem dysbiosis and gut dysfunction in the piglets during the weaning transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.