A novel and effective method was described in this work to prepare two-dimensional hexagonally ordered mesoporous CMK-5 carbon materials. This method is based on the chemical vapor deposition (CVD) of ferrocene in the mesopores of SBA-15 at 500 °C, followed by graphitization at different temperatures. Both the silica/carbon composite and the resulting CMK-5 were characterized by N 2 adsorption, powder X-ray diffraction, Raman spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy (HRTEM), and thermogravimetric analysis. It was found that the ferrocene could be used as a new precursor to prepare CMK-5 nanopipes, with pipe thicknesses varying from 0.8 to 2.6 nm, by increasing the CVD time from 20 to 120 min. The resulting CMK-5 exhibits high Brunauer-Emmett-Teller (BET) surface area (1044-2449 m 2 /g) and large pore volume (1.13-2.20 cm 3 /g). The graphitization degree of the resulting CMK-5 was investigated by pyrolyzing the corresponding silica/carbon composite at different temperatures. Pyrolysis temperatures below 850 °C led to gradually improved graphitization degrees of CMK-5 nanopipes. Pyrolysis temperatures above 850 °C resulted in the partial collapse of ordered CMK-5 nanopipes accompanied by the appearance of a considerable amount of entangled graphitic ribbons. The structural evolution process of CMK-5 from ordered nanopipes to the final entangled graphitic ribbons was observed by HRTEM. The obtained CMK-5 was applied as a catalyst support of Pt for methanol oxidation. The electrochemical activities of Pt nanoparticles loaded on the CMK-5 carbon materials were investigated by cyclic voltammograms and compared with the commercial Pt/Vulcan XC-72 catalyst. It was found that the specific mass activity of Pt/CMK-5 was much higher than Pt/Vulcan XC-72.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.