Intrinsic triferroicity is essential and highly sought for novel device applications, such as high-density multistate data storage. So far, the intrinsic triferroicity has only been discussed in three-dimensional systems. Herein on basis of first-principles, we report the intrinsic triferroicity in two-dimensional lattice. Being exfoliatable from the layered bulk, single-layer FeO2H is shown to be an intrinsically triferroic semiconductor, presenting antiferromagnetism, ferroelasticity and ferroelectricity simultaneously. Moreover, the directional control of its ferroelectric polarization is achievable by 90° reversible ferroelastic switching. In addition, single-layer FeO2H is identified to harbor in-plane piezoelectric effect. The unveiled phenomena and mechanism of triferroics in this two-dimensional system not only broaden the scientific and technological impact of triferroics but also enable a wide range of nanodevice applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.