One of the breakthroughs in biomaterials and regenerative medicine in the latest decade is the finding that matrix stiffness affords a crucial physical cue of stem cell differentiation. This statement was recently challenged by another understanding that protein tethering on material surfaces instead of matrix stiffness was the essential cue to regulate stem cells. Herein, we employed nonfouling poly(ethylene glycol) (PEG) hydrogels as the matrix to prevent nonspecific protein adsorption, and meanwhile covalently bound cell-adhesive arginine-glycine-aspartate (RGD) peptides onto the hydrogel surfaces in the form of well-defined nanoarrays to control specific cell adhesion. This approach enables the decoupling of the effects of matrix stiffness and surface chemistry. Mesenchymal stem cells (MSCs) were cultured on four substrates (two compressive moduli of the PEG hydrogels multiplied by two RGD nanospacings) and incubated in the mixed osteogenic and adipogenic medium. The results illustrate unambiguously that matrix stiffness is a potent regulator of stem cell differentiation. Moreover, we reveal that RGD nanospacing affects spreading area and differentiation of rat MSCs, regardless of the hydrogel stiffness. Therefore, both matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate.
Micropatterns of gold (Au) nanoarrays on inorganic and polymeric substrates were fabricated by combining block copolymer micelle nanolithography to obtain gold nanoarrays on glass, photolithography plus hydrofluoric acid (HF) etching to generate microislands, and transfer lithography to shift the gold micro/nanopatterns from glass to a bioinert poly(ethylene glycol) (PEG) hydrogel surface. Further the modification of the gold nanodots via cell-adhesive arginine-glycine-aspartate (RGD) ligands was carried out to achieve peptide micro/nanopatterns. Whereas the micro/nanopatterns of noble metals could be useful in various applications, the peptide micro/nanopatterns especially enable persistent cell localization on adhesive micropatterns of RGD nanoarrays on the background of potently nonfouling PEG hydrogels, and thus offer a powerful tool to investigate cell-material interactions on both molecular and cellular levels. As a demonstration, we cultured human mesenchymal stem cells (hMSCs) on micro/nanopatterns with RGD nanoarrays of nanospacings 46 and 95 nm, and with micropans of side lengths 35 and 65 μm (four groups in total). The osteogenic and adipogenic differentiation of hMSCs was conducted, and the potential effect of RGD nanospacing and the effect of cell spreading size on cell differentiation were decoupled for the first time. The results reveal that RGD nanospacing, independent of cell spreading size, acts as a strong regulator of cell tension and stem cell differentiation, which cannot be concluded unambiguously based on either merely micropatterns or nanopatterns.
While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on "subcellular" geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide-co-glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.