Directional sensors, if collocated but perpendicularly oriented among themselves, would facilitate signal processing to uncouple the azimuth-polar direction from the time-frequency dimension-in addition to the physical advantage of spatial compactness. One such acoustical sensing unit is the well-known "tri-axial velocity sensor" (also known as the "gradient sensor," the "velocity-sensor triad," the "acoustic vector sensor," and the "vector hydrophone"), which comprises three identical figure-8 sensors of the first directivity-order, collocated spatially but oriented perpendicularly of each other. The directivity of the figure-8 sensors is hypothetically raised to a higher order in this analytical investigation with an innocent hope to sharpen the overall triad's directionality and steerability. Against this wishful aspiration, this paper rigorously analyzes how the directivity-order would affect the triad's "spatial-matched-filter" beam's directional steering capability, revealing which directivity-order(s) would allow the beam-pattern of full maneuverability toward any azimuthal direction and which directivity-order(s) cannot. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.