The fast evolving and deadly outbreak of coronavirus disease (COVID-19) has posed grand challenges to human society. To slow the spread of virus infections and better respond for community mitigation, by advancing capabilities of artificial intelligence (AI) and leveraging the large-scale and up-to-date data generated from heterogeneous sources (e.g., disease related data, demographic, mobility and social media data), in this work, we propose and develop an AI-driven system (named α-Satellite), as an initial offering, to provide dynamic COVID-19 risk assessment in the United States. More specifically, given a point of interest (POI), the system will automatically provide risk indices associated with it in a hierarchical manner (e.g., state, county, POI) to enable people to select appropriate actions for protection while minimizing disruptions to daily life. To comprehensively evaluate our system for dynamic COVID-19 risk assessment, we first conduct a set of empirical studies; and then we validate it based on a real-world dataset consisting of 5,060 annotated POIs, which achieves the area of under curve (AUC) of 0.9202. As of June 18, 2020, α-Satellite has had 56,980 users. Based on the feedback from its large-scale users, we perform further analysis and have three key findings: i) people from more severe regions (i.e., with larger numbers of COVID-19 cases) have stronger interests using our system to assist with actionable information; ii) users are more concerned about their nearby areas in terms of COVID-19 risks; iii) the user feedback about their perceptions towards COVID-19 risks of their query POIs indicate the challenge of public concerns about the safety versus its negative effects on society and the economy. Our system and generated datasets have been made publicly accessible via our website.
Abstract. This paper is the first attempt to introduce a new concept of the birth and death of particles via time variant particle population size to improve the adaptation of Particle Swarm Optimization (PSO). Here a dynamic particle population based PSO algorithm (DPPSO) is proposed based on a time-variant particle population function which contains the attenuation item and undulate item. The attenuation item makes the population decrease gradually in order to reduce the computational cost because the particles have the tendency of convergence as time passes. The undulate item consists of periodical phases of ascending and descending. In the ascending phase, new particles are randomly produced to avoid the particle swarm being trapped in the local optimal point, while in the descending phase, particles with lower ability gradually die so that the optimization efficiency is improved. The test on four benchmark functions shows that the proposed algorithm effectively reduces the computational cost and greatly improves the global search ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.