Herein, high‐temperature hot compression tests are carried out to investigate the hot deformation behavior of a novel Cr–Mo–V hot work die steel. Meanwhile, a strain compensation Arrhenius constitutive equation is created, and the fitting correlation coefficient R between the experimental and predicted values is 0.98921, with a mean average absolute relative error (AARE) of 3.82%. According to the results, the hot deformation constitutive equation of the novel Cr–Mo–V steel can predict the flow stress of hot deformation with high accuracy. Furthermore, the equations for critical stress (strain), peak stress (strain), and Zener–Holomon parameters are constructed, and they demonstrate a satisfactory linear fit. Additionally, a hot processing map of the novel Cr–Mo–V steel is developed at strains of 0.4, 0.5, 0.6, and 0.7. By analyzing the hot processing map and viewing the microstructure, this study concludes that the optimal hot processing parameters of the novel Cr–Mo–V steel are 1050–1150 °C and 0.8–1 s−1 at a strain of 0.7, with a peak power dissipation efficiency of nearly 0.68.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.