Metal halide perovskite (MHP) materials, named as the game changers, have attracted researchers’ attention worldwide for over a decade. Among them, nanometer‐scale perovskite nanocrystals (PNCs) have exhibited attractive photophysical properties, such as tunable bandgaps, narrow emission, strong light‐absorption coefficients, and high defect tolerance, because they combined the excellent optoelectronic properties of bulk perovskite materials with strong quantum confinement effects of the nanoscale. These materials possess a great potential to be applied in the optoelectronic devices. For commercial applications in devices like solar cells (SCs), light‐emitting diodes (LEDs), and photodetectors (PDs), the stability of PNCs against ambient atmosphere like oxygen and moisture, as well as light and high temperature is crucial. Herein, the synthetic methods and stability issues of the PNCs are introduced first, followed by the introduction of the strategies for improving their stability by encapsulation. The applications of PNCs in various optoelectronic devices are then briefly presented. Finally, the remained challenges in improving the stability of PNCs toward the PNC‐based optoelectronics with high performance and great durability are addressed.
In the field of perovskite solar cells, explorations of new lead-free all-inorganic perovskite materials are of great interest to address the instability and toxicity issues of lead-based hybrid perovskites. Recently, copper-antimony-based double perovskite materials have been reported with ideal band gaps, which possess great potential as absorbers for photovoltaic applications. Here, we synthesize Cs2CuSbCl6 double perovskite nanocrystals (DPNCs) at ambient conditions by a facile and fast synthesis method, namely, a modified ligand-assisted reprecipitation method. We choose methanol as a solvent for precursor salts as it is less toxic and easily removed in contrast to widely used dimethylformamide. Our computational structure search shows that the Cs2CuSbCl6 structure containing alternating [CuCl6]5− and [SbCl6]3− octahedral units is a metastable phase that is 30 meV/atom higher in energy compared to the ground state structure with [CuCl3]2− and [SbCl6]3− polyhedra. However, this metastable Cs2CuSbCl6 double perovskite structure can be stabilized through solution-based nanocrystal synthesis. Using an anion-exchange method, Cs2CuSbBr6 DPNCs are obtained for the first time, featuring a narrow bandgap of 0.9 eV. Finally, taking advantage of the solution processability of DPNCs, smooth and dense Cs2CuSbCl6 and Cs2CuSbBr6 DPNC films are successfully fabricated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.