MIKC classic (MIKC)-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKC-type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKC-type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKC-type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.
Japanese pear (Pyrus pyrifolia) is a major fruit tree in the family Rosaceae and is bred for fruit production. To promote the development of breeding strategies and molecular research for Japanese pear, we sequenced the transcripts of Japanese pear variety ‘Hosui’. To exhaustively collect information of total gene expression, RNA samples from various organs and stages of Japanese pear were sequenced by three technologies, single-molecule real-time (SMRT) sequencing, 454 pyrosequencing, and Sanger sequencing. Using all those reads, we determined comprehensive reference sequences of Japanese pear. Then, their protein sequences were predicted, and biological functional annotations were assigned. Finally, we developed a web database, TRANSNAP (http://plantomics.mind.meiji.ac.jp/nashi), which is the first web resource of Japanese pear omics information. This database provides highly reliable information via a user-friendly web interface: the reference sequences, gene functional annotations, and gene expression profiles from microarray experiments. In addition, based on sequence comparisons among Japanese, Chinese and European pears, similar protein sequences among the pears and species-specific proteins in Japanese pear can be quickly and efficiently identified. TRANSNAP will aid molecular research and breeding in Japanese pear, and its information is available for comparative analysis among other pear species and families.
The reflection light forms the core of our visual perception of the world. We can obtain vast information by examining reflection light from biological surfaces, including pigment composition and distribution, tissue structure, and surface microstructure. However, because of the limitations in our visual system, the complete information in reflection light, which we term “reflectome,” cannot be fully exploited. For example, we may miss reflection light information outside our visible wavelengths. In addition, unlike insects, we have virtually no sensitivity to light polarization. We can detect non-chromatic information lurking in reflection light only with appropriate devices. Though previous studies have designed and developed systems for specialized uses supporting our visual systems, we still do not have a versatile, rapid, convenient, and affordable system for analyzing broad aspects of reflection from biological surfaces. To overcome this situation, we developed P-MIRU, a novel multi-spectral and polarization imaging system for reflecting light from biological surfaces. The hardware and software of P-MIRU are open-source and customizable and thus can be applied for virtually any research on biological surfaces. Furthermore, P-MIRU is a user-friendly system for biologists with no specialized programming or engineering knowledge. P-MIRU successfully visualized multi-spectral reflection in visible/non-visible wavelengths and simultaneously detected various surface phenotypes of spectral polarization. P-MIRU system extends our visual ability and unveils information on biological surfaces. (217/250 words)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.