Glycolipids containing short-chain fatty acids are important tobacco smokearoma precursors, especially in oriental tobacco.*~3) They are contained in the surface lipids of tobacco plants. Previously, we have classified Nicotiana species tentatively by the nature of the surface glycolipids into 1) N. species having no glycolipids, 2) N. species having mainly glucose esters, 3) N. species having mainly sucrose esters, and 4) N. species having both glucose esters and sucrose esters.4) In this classification, N.
In order to judge the quality of tobacco leaf, it is necessary to conduct sensory smoke evaluations. However, these are subjective and the results are difficult to quantify. Therefore, we have attempted to establish a quantitative method for evaluating tobacco quality by comparing results of headspace analysis. Forty-seven leaf samples of different types (flue-cured, Burley, Oriental) were analyzed. The first step in this study was to have a panel of experts smoke cigarettes made from the test tobaccos and have them evaluate 10 sensory attributes. The scores were then analyzed by the technique of principal component analysis (PCA). Results showed that the score for the flavor note attribute indicated the type of tobacco and the scores of the other 9 attributes were combined as a total to indicate smoking quality. Following the sensory study, headspace vapors of the test tobaccos were analyzed with a headspace sampler, gas chromatography, mass spectroscopy system (HS-GC-MS), in which the gas sampling loop and the HS-GC transfer line were deactivated. In order to obtain conditions for good reproducibility, the heating temperature and time of the headspace vials were examined. PCA was performed for the headspace vapor (HSV) analysis results for 31 selected peaks. The first and second principal components could be used to classify tobacco types. The third principal component partially indicated differences of smoking qualities. Finally, multiple regression analysis was performed on the HSV analysis results in order to estimate the smoking quality scores. The regression model of all samples combined had a low regression coefficient. Then, we separated the results of the three tobacco types, as we considered that the headspace data might reveal information about the classifications themselves. The final outcome was a regression model that could be applied to each type with a higher accuracy. The variables that entered the models were compared.
Single puffs of cigarette smoke with a wide continuous range of volatility are directly analyzed using a new system. The system consists of a smoking machine, an online thermal desorption system (TDS), and a multidimensional gas chromatograph-mass spectrometer (MDGC-MS) system. The online TDS with the smoking machine collects the single-puff cigarette smoke with glass beads as the cryogenic adsorbent. The MDGC is composed of three capillary columns, Poraplot Q, and DB-WAX for separation and a deactivated capillary column for pressure balance, which enables simultaneous separation of the two different phases. The smoke desorbed from the TDS is divided into vapor and semivolatile phases and analyzed individually with each column by the MDGC. Thus, the system enables the overall analysis of the two phases simultaneously, including acetaldehyde and 1,4-benzenediol. This system also provides more appropriate analysis for compounds crossing the two phases such as toluene and pyridine. For the approach of introducing internal standards, a gas mixture of toluene-d(8) and o-xylene-d(10) is applied and the compounds are detected in the vapor and semivolatile phases, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.