We introduce a new notion of the core of a braided fusion category. It allows to separate the part of a braided fusion category that does not come from finite groups. We also give a comprehensive and self-contained exposition of the known results on braided fusion categories without assuming them pre-modular or non-degenerate. The guiding heuristic principle of our work is an analogy between braided fusion categories and Casimir Lie algebras.
In this paper we extend categorically the notion of a finite nilpotent group to fusion categories. To this end, we first analyze the trivial component of the universal grading of a fusion category C, and then introduce the upper central series of C. For fusion categories with commutative Grothendieck rings (e.g., braided fusion categories) we also introduce the lower central series. We study arithmetic and structural properties of nilpotent fusion categories, and apply our theory to modular categories and to semisimple Hopf algebras. In particular, we show that in the modular case the two central series are centralizers of each other in the sense of M. Müger.
Let Ꮿ be a fusion category faithfully graded by a finite group G and let Ᏸ be the trivial component of this grading. The center ᐆ(Ꮿ) of Ꮿ is shown to be canonically equivalent to a G-equivariantization of the relative center ᐆ Ᏸ (Ꮿ). We use this result to obtain a criterion for Ꮿ to be group-theoretical and apply it to Tambara-Yamagami fusion categories. We also find several new series of modular categories by analyzing the centers of Tambara-Yamagami categories. Finally, we prove a general result about the existence of zeroes in S-matrices of weakly integral modular categories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.