The objective of the current study was to elucidate the clinicopathological significance and appearance of in vitro three-dimension (3D) spheroid models of oral malignant tumors that were prepared from four pathologically different squamous cell carcinoma (OSCC; low-grade; SSYP and MO-1000, intermediate-grade; LEM2) and oral adenosquamous carcinoma (OASC; high-grade; Mesimo) obtained from patients with different malignant stages. To characterize the biological significance of these cell lines themselves, two-dimensional (2D) cultured cells were subjected to cellular metabolic analysis by a Seahorse bioanalyzer alongside the measurement of the cytotoxicity of cisplatin (CDDP). The appearance of their 3D spheroids was then observed by phase contrast microscopy, and both 2D and 3D cultured cells were subject to trypsin digestion and qPCR analysis of factors related to oncogenic signaling and other related analyses. ATP-linked respiration and proton leaking were significantly different among the four cell lines, and the malignant stages of these cultures were significantly associated with increased ATP-linked respiration and decreased proton leakage. Alternatively, the appearances of these 3D spheroids were also significantly diverse among them, and their differences increased in the order of LEM2, MO-1000, SSYP, and Mesimo. Interestingly, these orders were exactly the same in that the efficacies of CDDP-induced cytotoxicity increased in the same order. qPCR analysis indicated that the levels of expression of oncogenic signaling-related factors varied among these four cell lines, and the values for fibronectin and a key regulator of mitochondrial biogenesis, PGC-1α, were prominently elevated in cultures of the worst malignant Mesimo cells. In addition, although 0.25% trypsin-induced destruction was comparable among all four 2D cultured cells, the values for the 3D spheroids were also substantially varied among these cultures. The findings reported herein indicate that cellular metabolic functions and 3D spheroid architectures may be valuable and useful indicators for estimating the pathological and drug-sensitive aspects of OSCC and OASC malignancies.
The mortality rate of oral cancer has not improved over the past three decades despite remarkable advances in cancer therapies. Oral cancers contain a subpopulation of cancer stem cells (CSCs) that share characteristics associated with normal stem cells, including self‐renewal and multi‐differentiation potential. CSCs are tumorigenic, play a critical role in cancer infiltration, recurrence, and distant metastasis, and significantly contribute to drug resistance to current therapeutic strategies, including immunotherapy. Cytotoxic CD8+ T lymphocytes (CTLs) are key immune cells that effectively recognize peptide antigens presented by the major histocompatibility complex class I molecules. Increasing evidence suggests that cancer antigen‐specific targeting by CTLs effectively regulates CSCs that drive cancer progression. In this study, we utilized data from public domains and performed various bioassays on human oral squamous cell carcinoma clinical samples and cell lines, including HSC‐2 and HSC‐3, to investigate the potential role of olfactory receptor family 7 subfamily C member 1 (OR7C1), a seven transmembrane G‐protein‐coupled olfactory receptor that is also expressed in nonolfactory tissues and was previously reported as a novel marker and target of colon cancer initiating cell‐targeted immunotherapy, in CSC‐targeted treatment against oral cancer. We found that the OR7C1 gene was expressed only in oral CSCs, and that CTLs reacted with human leukocyte antigen‐A24‐restricted OR7C1 oral CSC‐specific peptides. Taken together, our findings suggest that OR7C1 represents a novel target for potent CSC‐targeted immunotherapy in oral cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.