A study was done on the tailored neutron energy spectra of (241)Am-Be neutron source due to the effect of moderators. The (241)Am-Be laboratory neutron source was used as the basic source and the emitted spectrum was modified using various neutron moderators. The various moderators used are high-density polythene, light water, heavy water, graphite, (56)Fe, BeO, Be, (6)Li and (7)Li. The absolute energy spectra and fluences in each case are calculated by using the Monte Carlo code FLUKA. This paper describes the simulation work done to design a moderated (241)Am-Be neutron source to produce various energy neutron spectra.
A single stage vacuum-type proton recoil neutron telescope (PRT) was used for accurate measurement of 14.57 MeV neutron fluence rate from an indigenously developed D-T neutron generator at Purnima, BARC. The telescope consists of a polyethylene radiator having 4 cm diameter and CsI (Tl) scintillation crystal having thickness 1.5 mm and 4 cm diameter separated by 20.5 cm kept in a vacuum chamber. The neutron detection efficiency of the telescope for 14.57 MeV neutrons was calculated analytically using n-p scattering cross section data from Evaluated Nuclear Data File VII and also evaluated using fluka simulation. The relativistic transformation of n-p differential scattering cross section from centre-of-mass to laboratory system was used for calculating the efficiency of PRT. The 14.57 MeV neutron fluence rate was also measured using copper foils. The comparison of fluence rate measured using PRT and copper foil activation techniques is presented in this paper. The total uncertainty in measurement using PRT and copper foil activation technique is found to be 3.93 and 6.97%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.