In this study, mineralogical, geochemical, and isotopic data are presented for the Sylhet Trap at the southern flank of the eastern Shillong Plateau, northeastern India, to determine the magma genesis in relation to the Kerguelen plume mantle source. Sylhet Trap rocks are porphyritic tholeiite and have diverse chemical compositions from picro-basalt, basalt, andesite to dacite, but mostly are within the subalkaline field. Major and trace element data were used to identify two distinct magma fractionation trends, a low and medium K series, characterized by relatively flat MORB-like (analogous to Rajmahal Traps (II)) and enriched OIB chondrite-normalized Rare Earth Element (REE) patterns. Initial 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb isotope compositions were widely varied, ranging from 0.70435-0.71357, 0.51196-0.51266, and 17.92-19.72, respectively, when compared with basalts from the West Bengal, the Rajmahal Traps and the Kerguelen plume. Correlations among isotopic and trace element ratios of the Sylhet Traps provide evidence for the involvement of (1) HIMU-like mantle component, (2) the Kerguelen plume-like component, and (3) EMII-like crustal component. Magma from the Sylhet Traps was originated from a melting that derived directly from the heterogeneous Kerguelen mantle plume (components 1 and 2), which strongly suggests the presence of the Kerguelen plume-head in the Bengal basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.