Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified.
We propose a new iterative screening contest method to identify target protein inhibitors. After conducting a compound screening contest in 2014, we report results acquired from a contest held in 2015 in this study. Our aims were to identify target enzyme inhibitors and to benchmark a variety of computer-aided drug discovery methods under identical experimental conditions. In both contests, we employed the tyrosine-protein kinase Yes as an example target protein. Participating groups virtually screened possible inhibitors from a library containing 2.4 million compounds. Compounds were ranked based on functional scores obtained using their respective methods, and the top 181 compounds from each group were selected. Our results from the 2015 contest show an improved hit rate when compared to results from the 2014 contest. In addition, we have successfully identified a statistically-warranted method for identifying target inhibitors. Quantitative analysis of the most successful method gave additional insights into important characteristics of the method used.
MotivationRecently, the number of available protein tertiary structures and compounds has increased. However, structure-based virtual screening is computationally expensive owing to docking simulations. Thus, methods that filter out obviously unnecessary compounds prior to computationally expensive docking simulations have been proposed. However, the calculation speed of these methods is not fast enough to evaluate ≥ 10 million compounds.ResultsIn this article, we propose a novel, docking-based pre-screening protocol named Spresso (Speedy PRE-Screening method with Segmented cOmpounds). Partial structures (fragments) are common among many compounds; therefore, the number of fragment variations needed for evaluation is smaller than that of compounds. Our method increases calculation speeds by ∼200-fold compared to conventional methods.Availability and ImplementationSpresso is written in C ++ and Python, and is available as an open-source code (http://www.bi.cs.titech.ac.jp/spresso/) under the GPLv3 license.Supplementary information Supplementary data are available at Bioinformatics online.
Druglikeness is a useful concept for screening drug candidate compounds. We developed QEX, which is a new druglikeness index specific to individual targets. QEX is an improvement of the quantitative estimate of druglikeness (QED) method, which is a popular quantitative evaluation method of druglikeness proposed by Bickerton et al. QEX models the physicochemical properties of compounds that act on each target protein based on the concept of QED modeling physicochemical properties from information on US Food and Drug Administration-approved drugs. The result of the evaluation of PubChem assay data revealed that QEX showed better performance than the original QED did (the area under the curve value of the receiver operating characteristic curve improved by 0.069-0.236). We also present the c-Src inhibitor filtering results of the QEX constructed using Src family kinase inhibitors as a case study. QEX distinguished the inhibitors and non-inhibitors better than QED did. QEX works efficiently even when datasets of inactive compounds are unavailable. If both active and inactive compounds are present, QEX can be used as an initial filter to enhance the screening ability of conventional ligand-based virtual screenings.
The development of a new drug takes over 10 years and costs approximately US $2.6 billion. Virtual compound screening (VS) is a part of efforts to reduce this cost. Learning-to-rank is a machine learning technique in information retrieval that was recently introduced to VS. It works well because the application of VS requires the ranking of compounds. Moreover, learning-to-rank can treat multiple heterogeneous experimental data because it is trained using only the order of activity of compounds. In this study, we propose PKRank, a novel learning-to-rank method for ligand-based VS that uses a pairwise kernel and RankSVM. PKRank is a general case of the method proposed by Zhang et al. with the advantage of extensibility in terms of kernel selection. In comparisons of predictive accuracy, PKRank yielded a more accurate model than the previous method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.