Diabetic patients develop cardiomyopathy characterized by hypertrophy, diastolic dysfunction, lipotoxicity, and mitochondrial dysfunction. How mitochondrial function is regulated in diabetic cardiomyopathy remains poorly understood. Mice were fed either a normal diet (ND) or a high fat diet (HFD, 60 kcal % fat). Mitophagy, evaluated with Mito‐Keima, was increased after 3 weeks of HFD feeding (mitophagy area: 8.3% per cell with ND and 12.4% with HFD) and continued to increase after 20 weeks (p<0.05). Although we have shown recently that mitophagy during the early phase of HFD feeding is mediated by Atg7‐dependent mechanisms, the mechanisms mediating mitophagy in the heart during the chronic phase of HFD feeding remain poorly understood. Phosphorylation of ULK1 was activated and Rab9 protein level was increased in the mitochondrial fraction within 20 weeks of HFD consumption (p<0.05). By isolating adult cardiomyocytes from GFP‐Rab9 transgenic mice fed HFD, we discovered that mitochondria were sequestrated by Rab9‐positive ring‐like structures. Since ULK1 regulates Rab9‐dependent mitophagy, we fed ULK1 cKO mice with HFD for 20 weeks. In wild type (WT) mice, cardiac hypertrophy and diastolic dysfunction (EDPVR = 0.051±0.009 in ND and 0.115±0.006 in HFD) were induced after 20 weeks of HFD feeding (p<0.05). By crossing Tg‐Mito‐Keima mice with ULK1 cKO mice, we found that downregulation of ULK1 impaired mitophagy in response to ND or 20 weeks of HFD consumption (p<0.05). Deletion of ULK1 exacerbated diastolic dysfunction (EDPVR=0.115±0.006 in WT and 0.162±0.021 in ULK1 cKO, p<0.05) and even induced systolic dysfunction (ESPVR=22.74±2.13 in WT and 16.78±2.12 in ULK1 cKO, p<0.05) during HFD feeding. Electron microscopic analyses indicated that the mitochondrial cristae structure was disrupted more severely in ULK1 cKO mice with HFD feeding than control mice (p<0.05). In summary, genetic disruption of ULK1‐Rab9‐dependent mitophagy during the chronic phase of HFD feeding exacerbates mitochondrial dysfunction, thereby facilitating the development of diabetic cardiomyopathy. ULK1‐Rab9‐dependent mitophagy serves as an essential quality control mechanism for cardiac mitochondria during HFD feeding.
Support or Funding Information
The project was supported by AHA and NIH (5R01HL138720‐02).
This abstract is from the Experimental Biology 2019 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
ObjectiveTo investigate the morphological features of chronic inflammatory demyelinating polyneuropathy (CIDP) with autoantibodies directed against paranodal junctional molecules, particularly focusing on the fine structures of the paranodes.MethodsWe assessed sural nerve biopsy specimens obtained from 9 patients with CIDP with anti-neurofascin-155 antibodies and 1 patient with anti-contactin-1 antibodies. 13 patients with CIDP without these antibodies were also examined to compare pathological findings.ResultsCharacteristic light and electron microscopy findings in transverse sections from patients with anti-neurofascin-155 and anti-contactin-1 antibodies indicated a slight reduction in myelinated fibre density, with scattered myelin ovoids, and the absence of macrophage-mediated demyelination or onion bulbs. Teased-fibre preparations revealed that segmental demyelination tended to be found in patients with relatively higher frequencies of axonal degeneration and was tandemly found at consecutive nodes of Ranvier in a single fibre. Assessment of longitudinal sections by electron microscopy revealed that detachment of terminal myelin loops from the axolemma was frequently found at the paranode in patients with anti-neurofascin-155 and anti-contactin-1 antibody-positive CIDP compared with patients with antibody-negative CIDP. Patients with anti-neurofascin-155 antibodies showed a positive correlation between the frequencies of axo–glial detachment at the paranode and axonal degeneration, as assessed by teased-fibre preparations (p<0.05).ConclusionsParanodal dissection without classical macrophage-mediated demyelination is the characteristic feature of patients with CIDP with autoantibodies to paranodal axo–glial junctional molecules.
These findings suggest that direct insult of amyloid fibrils causes Schwann cell damage, resulting in the predominant loss of small-fiber axons characteristic of early-onset cases. In addition, vasculopathy may participate in the pathogenesis of neuropathy, particularly in late-onset cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.