The development of chiral nanographenes has mostly been carried out by bottom‐up methods and examples of species developed by the post‐modification of nanographenes prepared by top‐down methods remain limited. We show that the attachment of chiral functional groups onto the edge of nanographenes generates chirality on the surface. X‐ray diffraction analysis and DFT calculations indicate that the chirality of the functional groups is transferred to the surface via steric interactions from the chiral center through the five‐membered cyclic imide to the nanographene edge. The exciton coupling between the p‐bromophenyl groups confirms that the functional groups are arranged on the armchair edges at distances that permit exciton coupling, which provides information about their relative orientation. These pieces of information help to elucidate the edge structure of nanographenes prepared by top‐down methods.
Top‐down approaches have been widely used as convenient methods for the production of nanographenes. To understand the photoemission properties of nanographenes, their separation and the optical properties of the individual fractions is important. By using a combination of size‐exclusion and silica‐gel‐adsorption chromatography, we separated lipophilic nanographenes that contained para‐methoxybenzyl groups. The mixture consisted of large (average 19.8 nm) and small (average 4.9 nm) nanographenes, whilst unreacted carboxy groups remained in the latter group. Optical measurements revealed that oxygen‐containing functional groups had little influence on the photoemission of the nanographenes, thus indicating that the intrinsic emission, that is, emission from the sp2 surfaces, was responsible for the photoemission. Two photoemission bands were observed for all of the fractions, which likely originated from the edge and inner parts of nanographene.
The development of chiral nanographenes has mostly been carried out by bottom‐up methods and examples of species developed by the post‐modification of nanographenes prepared by top‐down methods remain limited. We show that the attachment of chiral functional groups onto the edge of nanographenes generates chirality on the surface. X‐ray diffraction analysis and DFT calculations indicate that the chirality of the functional groups is transferred to the surface via steric interactions from the chiral center through the five‐membered cyclic imide to the nanographene edge. The exciton coupling between the p‐bromophenyl groups confirms that the functional groups are arranged on the armchair edges at distances that permit exciton coupling, which provides information about their relative orientation. These pieces of information help to elucidate the edge structure of nanographenes prepared by top‐down methods.
Top-down methods produce nanographenes with many carboxy groups on their edges. These functional groups can be utilized for developing multichromophoric systems. As proof of concept, pyrene is installed on the edges by Pd-catalyzed cross-coupling reactions. The lack of monomer emissions from the functionalized nanographenes indicates that the neighboring chromophores are sufficiently distant to form the excimer. The pyrene-installed nanographene emits bluish-white-light. Its lipophilic nature allows fabricating a nanographene-dispersed polymethyl methacrylate film emitting visible light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.