In this study, we developed an integrated, low-cost microfluidic cell culture system that is easy to use. This system consists of a disposable polystyrene microchip, a polytetrafluoroethylene valve, an air bubble trap, and an indium tin oxide temperature controller. Valve pressure resistance was validated with a manometer to be 3 MPa. The trap protected against bubble contamination. The temperature controller enabled the culture of Macaca mulatta RF/6A 135 vascular endothelial cells, which are difficult to culture in glass microchips, without a CO2 incubator. We determined the optimal coating conditions for these cells and were able to achieve stable, confluent culture within 1 week. This practical system is suitable for low-cost screening and has potential applications as circulatory cell culture systems and research platforms in cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.