Stuck pipe incidents are one of the contributors to non-productive time (NPT), where they can result in a higher well cost. This research investigates the feasibility of applying machine learning to predict events of stuck pipes during drilling operations in petroleum fields. The predictive model aims to predict the occurrence of stuck pipes so that relevant drilling operation personnel are warned to enact a mitigation plan to prevent stuck pipes. Two machine learning methodologies were studied in this research, namely, the artificial neural network (ANN) and support vector machine (SVM). A total of 268 data sets were successfully collected through data extraction for the well drilling operation. The data also consist of the parameters with which the stuck pipes occurred during the drilling operations. These drilling parameters include information such as the properties of the drilling fluid, bottom-hole assembly (BHA) specification, state of the bore-hole and operating conditions. The R programming software was used to construct both the ANN and SVM machine learning models. The prediction performance of the machine learning models was evaluated in terms of accuracy, sensitivity and specificity. Sensitivity analysis was conducted on these two machine learning models. For the ANN, two activation functions—namely, the logistic activation function and hyperbolic tangent activation function—were tested. Additionally, all the possible combinations of network structures, from [19, 1, 1, 1, 1] to [19, 10, 10, 10, 1], were tested for each activation function. For the SVM, three kernel functions—namely, linear, Radial Basis Function (RBF) and polynomial—were tested. Apart from that, SVM hyper-parameters such as the regularization factor (C), sigma (σ) and degree (D) were used in sensitivity analysis as well. The results from the sensitivity analysis demonstrate that the best ANN model managed to achieve an 88.89% accuracy, 91.89% sensitivity and 86.36% specificity, whereas the best SVM model managed to achieve an 83.95% accuracy, 86.49% sensitivity and 81.82% specificity. Upon comparison, the ANN model is the better machine learning model in this study because its accuracy, sensitivity and specificity are consistently higher than those of the best SVM model. In conclusion, judging from the promising prediction accurateness as demonstrated in the results of this study, it is suggested that stuck pipe prediction using machine learning is indeed practical.
Well placement optimization is considered a non-convex and highly multimodal optimization problem. In this article, a modified crow search algorithm is proposed to tackle the well placement optimization problem. This article proposes modifications based on local search and niching techniques in the crow search algorithm (CSA). At first, the suggested approach is verified by experimenting with the benchmark functions. For test functions, the results of the proposed approach demonstrated a higher convergence rate and a better solution. Again, the performance of the proposed technique is evaluated with well placement optimization problem and compared with particle swarm optimization (PSO), the Gravitational Search Algorithm (GSA), and the Crow search algorithm (CSA). The outcomes of the study revealed that the niching crow search algorithm is the most efficient and effective compared to the other techniques.
For shale oil and gas exploration total organic carbon (TOC) is the significant factors where TOC estimation considered as a challenges for geological engineers because direct laboratory coring analysis is costly and time consuming. Passey method and Artificial Intelligence (AI) technique have used on well logs extensively to determine TOC content. But, the prediction of Passey method is low and AI technique such as ANN, Support Vector Machine (SVM) trapped in local optima, overfitting and heavy computation work or error if the technique isn’t reasonable. In this paper, for the first time in TOC prediction we propose three feature selection-based algorithm which are Decision Tree (DT), Gradient Boosting Regressor (GBR) and Random Forest (RF) respectively. This feature selection-based algorithm select the best attributes among the input parameters for TOC content prediction. Then those best attributes works as an input for AI models for training and testing the AI models which illustrates that making a correlation between well logs and TOC content for the prediction. Specifically, 2069 core shale sample and well logging sample data of the Texas University Lands of Kansas Geologic Society were divided into 1448 training sample and 621 validating sample to evaluate the proposed AI models. This proposed AI model and feature selection-based algorithm jointly allows TOC content to be accurately and continuously predicted based on conventional well logs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.