In this part, we propose a step-by-step strategy to model the static thermal coupling factors between the fingers in a silicon based multifinger bipolar transistor structure. First we provide a physics-based formulation to find out the coupling factors in a multifinger structure having no-trench isolation (cij,nt). As a second step, using the value of cij,nt, we propose a formulation to estimate the coupling factor in a multifinger structure having only shallow trench isolations (cij,st). Finally, the coupling factor model for a deep and shallow trench isolated multifinger device (cij,dt) is presented. The proposed modeling technique takes as inputs the dimensions of emitter fingers, shallow and deep trench isolations, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are validated against 3D TCAD simulations of multifinger bipolar transistors with and without trench isolations. Geometry scalability of the model is also demonstrated.
In this paper, we extend the model developed in part-I of this work to include the effects of the back-end-of-line (BEOL) metal layers and test its validity against on-wafer measurement results of SiGe heterojunction bipolar transistors (HBTs). First we modify the position dependent substrate temperature model of part-I by introducing a parameter to account for the upward heat flow through BEOL. Accordingly the coupling coefficient models for bipolar transistors with and without trench isolations are updated. The resulting modeling approach takes as inputs the dimensions of emitter fingers, shallow and deep trench isolation, their relative locations and the temperature dependent material thermal conductivity. Coupling coefficients obtained from the model are first validated against 3D TCAD simulations including the effect of BEOL followed by validation against measured data obtained from state-of-art multifinger SiGe HBTs of different emitter geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.