There is about to be an abrupt step-change in the use of coastal seas around the globe, specifically by the addition of large-scale offshore renewable energy developments to combat climate change. Developing this sustainable energy supply will require trade-offs between both direct and indirect environmental effects, as well as spatial conflicts with marine uses like shipping, fishing, and recreation. However, the nexus between drivers, such as changes in the bio-physical environment from the introduction of structures and extraction of energy, and the consequent impacts on ecosystem services delivery and natural capital assets is poorly understood and rarely considered through a whole ecosystem perspective. Future marine planning needs to assess these changes as part of national policy level assessments but also to inform practitioners about the benefits and trade-offs between different uses of natural resources when making decisions to balance environmental and energy sustainability and socio-economic impacts. To address this shortfall, we propose an ecosystem-based natural capital evaluation framework that builds on a dynamic Bayesian modelling approach which accounts for the multiplicity of interactions between physical (e.g., bottom temperature), biological (e.g., net primary production) indicators and anthropogenic marine use (i.e., fishing) and their changes across space and over time. The proposed assessment framework measures ecosystem change, changes in ecosystem goods and services and changes in socio-economic value in response to offshore renewable energy deployment scenarios as well as climate change, to provide objective information for decision processes seeking to integrate new uses into our marine ecosystems. Such a framework has the potential of exploring the likely outcomes in the same metrics (both ecological and socio-economic) from alternative management and climate scenarios, such that objective judgements and decisions can be made, as to how to balance the benefits and trade-offs between a range of marine uses to deliver long-term environmental sustainability, economic benefits, and social welfare.
This work investigates potential cost reduction trajectories of three emerging offshore renewable energy technologies (floating offshore wind, tidal stream, and wave) with respect to meeting ambitious cost targets set out in the Strategic Energy Technology Implementation Plans (SET-Plans) for Offshore Wind and Ocean Energy. A methodology is presented which calculates target costs for current early-stage devices, starting from the 2030 SET-Plan levelised cost targets. Component-based experience curves have been applied as part of the methodology, characterised through the comparative maturity level of each technology-specific cost centre. The resultant early-stage target costs are then compared with actual costs for current devices to highlight where further cost reduction is still required. It has been found that innovation and development requirements to reach these targets vary greatly between different technologies, based on their current level of technological maturity. Future funding calls and programmes should be designed with these variables in mind to support innovative developments in offshore renewables. The method presented in this paper has been applied to publicly available cost data for emerging renewable technologies and is fully adaptable to calculate the innovation requirements for specific early-stage renewable energy devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.