A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe3O4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ⩽10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (0 0 1) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10(-7) torr to 1 × 10(-5) torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED) and x-ray photoemission spectroscopy (XPS), respectively. The quality of the epitaxial Fe3O4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. It was observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe3O4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ⩽20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe3O4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.