Many cell-cell adhesive events are mediated by the dimerization of cadherin proteins presented on apposing cell surfaces. Cadherinmediated processes play a central role in the sorting of cells into separate tissues in vivo, but in vitro assays aimed at mimicking this behavior have yielded inconclusive results. In some cases, cells that express different cadherins exhibit homotypic cell sorting, forming separate cell aggregates, whereas in other cases, intermixed aggregates are formed. A third pattern is observed for mixtures of cells expressing either N-or E-cadherin, which form distinct homotypic aggregates that adhere to one another through a heterotypic interface. The molecular basis of cadherin-mediated cell patterning phenomena is poorly understood, in part because the relationship between cellular adhesive specificity and intermolecular binding free energies has not been established. To clarify this issue, we have measured the dimerization affinities of N-cadherin and E-cadherin. These proteins are similar in sequence and structure, yet are able to mediate homotypic cell patterning behavior in a variety of tissues. N-cadherin is found to form homodimers with higher affinity than does E-cadherin and, unexpectedly, the N/Ecadherin heterophilic binding affinity is intermediate in strength between the 2 homophilic affinities. We can account for observed cell aggregation behaviors by using a theoretical framework that establishes a connection between molecular affinities and cell-cell adhesive specificity. Our results illustrate how graded differences between different homophilic and heterophilic cadherin dimerizaton affinities can result in homotypic cell patterning and, more generally, show how proteins that are closely related can, nevertheless, be responsible for highly specific cellular adhesive behavior.binding affinities ͉ cadherins ͉ cell adhesion ͉ differential adhesion hypothesis ͉ surface plasmon resonance E xpression of different cadherins has been associated with the sorting of cells into distinct layers or compartments (1, 2). This behavior is often viewed as a manifestation of homotypic cell-sorting behavior-like cells adhere to one another. However, cell layers characterized by the expression of different cadherins sometimes remain in contact with one another, suggesting that heterotypic adhesion may also be of physiological relevance. Consistent with in vivo observations, in vitro aggregation assays have shown that cells expressing different classical cadherins can adhere to one another (3, 4). In some such instances, cells form distinct aggregates that possess a common interface, whereas in others, cells are completely mixed. Thus, cells expressing cadherins can exhibit homotypic and/or heterotypic adhesive properties, albeit for reasons that remain to be explained. Here, we probe the molecular basis of this behavior.Cadherins constitute a large family of cell surface adhesion receptors that can be grouped into numerous subfamilies (5). The type I and type II ''classical cadherins'' are found ...
Vertebrate genomes encode nineteen "classical" cadherins and about a hundred non-classical cadherins. Adhesion by classical cadherins depends on binding interactions in their amino terminal EC1 domains, which swap N-terminal β-strands between partner molecules from apposing cells. However, strand swapping sequence signatures are absent from non-classical cadherins, raising the question of how these proteins function in adhesion. Here we show that T-cadherin, a GPI-anchored cadherin, forms dimers through an alternative non-swapped interface near the EC1-EC2 calcium binding sites. Mutations within this interface ablate the adhesive capacity of T-cadherin. These nonadhesive T-cadherin mutants also lose the ability to regulate neurite outgrowth from T-cadherin expressing neurons. Our findings reveal the likely molecular architecture of the T-cadherin homophilic interface, and reveal its requirement for axon outgrowth regulation. The adhesive binding mode employed by T-cadherin may also be used by other non-classical cadherins.
Functional left/right asymmetry (''laterality'') is a fundamental feature of many nervous systems, but only very few molecular correlates to functional laterality are known. At least two classes of chemosensory neurons in the nematode Caenorhabditis elegans are functionally lateralized. The gustatory neurons ASE left (ASEL) and ASE right (ASER) are two bilaterally symmetric neurons that sense distinct chemosensory cues and express a distinct set of four known chemoreceptors of the guanylyl cyclase (gcy) gene family. To examine the extent of lateralization of gcy gene expression patterns in the ASE neurons, we have undertaken a genomewide analysis of all gcy genes. We report the existence of a total of 27 gcy genes encoding receptor-type guanylyl cyclases and of 7 gcy genes encoding soluble guanylyl cyclases in the complete genome sequence of C. elegans. We describe the expression pattern of all previously uncharacterized receptor-type guanylyl cyclases and find them to be highly biased but not exclusively restricted to the nervous system. We find that .41% (11/27) of all receptor-type guanylyl cyclases are expressed in the ASE gustatory neurons and that one-third of all gcy genes (9/27) are expressed in a lateral, left/right asymmetric manner in the ASE neurons. The expression of all laterally expressed gcy genes is under the control of a gene regulatory network composed of several transcription factors and miRNAs. The complement of gcy genes in the related nematode C. briggsae differs from C. elegans as evidenced by differences in chromosomal localization, number of gcy genes, and expression patterns. Differences in gcy expression patterns in the ASE neurons of C. briggsae arise from a difference in cisregulatory elements and trans-acting factors that control ASE laterality. In sum, our results indicate the existence of a surprising multitude of putative chemoreceptors in the gustatory ASE neurons and suggest the existence of a substantial degree of laterality in gustatory signaling mechanisms in nematodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.