1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (EMI-TFSA) is one of the promising ionic liquids as electrolyte solvent to enhance the electrochemical performance of Si electrode for Li-ion batteries (LIBs) because of its low viscosity and high conductivity. However, it has low stability against reduction and its reductive decomposition product inhibits Li + insertion to electrodes, leading to poor cycling stability. To exert a potential of EMI-TFSA, we employed vinylene carbonate (VC) as film-forming additive. Si electrode exhibited very high cycling stability and rate capability in 20 vol.% VC-added EMI-TFSA-based electrolyte. In addition, by replacing TFSA anion with bis(fluorosulfonyl)amide (FSA) for Li salt and ionic liquid solvent, an excellent cycling performance and outstanding rate capability was achieved. VC cannot only fabricate a good surface film but also lower the interaction between Li + and FSA-, providing smooth desolvation of FSAto obtain better high-rate performance. Non-flammability of the VC-added electrolytes was confirmed by fire resistance test in closed-system: no ignition was observed even at 300 • C. Consequently, we found that mixture electrolyte consisted of EMI-based ionic liquid and VC, especially 1 M LiFSA/EMI-FSA with 20 vol.% VC, is a prospective candidate for simultaneously enhancing the electrochemical performance of Si electrode as well as safety of LIBs.
A 71-year-old man was admitted because of nausea and abdominal pain. He was receiving an erythropoiesis-stimulating agent for anemia and dysregulated iron metabolism due to stage G5 chronic kidney disease. He had a history of raw fish intake and was diagnosed with infectious enterocolitis, which worsened and led to septic shock. Shewanella putrefaciens grew in the blood culture, but Shewanella algae was identified in a 16S rRNA gene sequence analysis. We herein report a case of S. algae bacteremia believed to have been transmitted orally. We also reviewed previous case reports on Shewanella infection in end-stage renal disease patients.
Clostridium difficile (C. difficile)-associated diarrhea (CDAD) is a challenging nosocomial infectious disease. C. DIFF Quik Chek Complete assay is widely used to detect glutamate dehydrogenase (GDH) antigen and toxin A/B of C. difficile simultaneously. However, the interpretation of GDH positive/toxin negative results is problematic. We performed a retrospective study of patients with GDH positive/toxin negative results to determine the probability of detecting toxigenic C. difficile and its risk factors. Between April 2012 and March 2017, we investigated cultures of fecal specimens followed by toxin detection tests. The clinical histories of patients with and without toxigenic C. difficile were compared using univariate- and multivariate-analyses. In total, 2675 patients were examined using C. Diff Quik Chek Complete assay. Among 356 GDH positive/toxin negative patients, cultures were performed in 220 cases and toxigenic C. difficile was recovered from 139 (63.2%) specimens. Patients with toxigenic C. difficile had significantly lower body mass index than those without. Over half the GDH positive/toxin negative patients were infected with toxigenic C. difficile. Lower BMI was a CDAD risk factor in this patient population. These data can be utilized to initiate isolation and clinical interventions before confirmatory test results are available. J. Med. Invest. 65:131-135, February, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.