Macroautophagy/autophagy plays a critical role in the pathogenesis of various human diseases including neurodegenerative disorders such as Parkinson disease (PD) and Huntington disease (HD). Chemical autophagy inducers are expected to serve as disease-modifying agents by eliminating cytotoxic/ damaged proteins. Although many autophagy inducers have been identified, their precise molecular mechanisms are not fully understood because of the complicated crosstalk among signaling pathways. To address this issue, we performed several chemical genomic analyses enabling us to comprehend the dominancy among the autophagy-associated pathways followed by an aggresome-clearance assay. In a first step, more than 400 target-established small molecules were assessed for their ability to activate autophagic flux in neuronal PC12D cells, and we identified 39 compounds as autophagy inducers. We then profiled the autophagy inducers by testing their effect on the induction of autophagy by 200 wellestablished signal transduction modulators. Our principal component analysis (PCA) and clustering analysis using a dataset of "autophagy profiles" revealed that two Food and Drug Administration (FDA)approved drugs, memantine and clemastine, activate endoplasmic reticulum (ER) stress responses, which could lead to autophagy induction. We also confirmed that SMK-17, a recently identified autophagy inducer, induced autophagy via the PRKC/PKC-TFEB pathway, as had been predicted from PCA. Finally, we showed that almost all of the autophagy inducers tested in this present work significantly enhanced the clearance of the protein aggregates observed in cellular models of PD and HD. These results, with the combined approach, suggested that autophagy-activating small molecules may improve proteinopathies by eliminating nonfunctional protein aggregates.
The reconstructed in vitro translation system known as the PURE system has been used in a variety of cell‐free experiments such as the expression of native and de novo proteins as well as various display methods to select for functional polypeptides. We developed a refined PURE‐based display method for the preparation of stable messenger RNA (mRNA) and complementary DNA (cDNA)‐peptide conjugates and validated its utility for in vitro selection. Our conjugate formation efficiency exceeded 40%, followed by gel purification to allow minimum carry‐over of components from the translation system to the downstream assay enabling clean and efficient random peptide sequence screening. We chose the commercially available anti‐FLAG M2 antibody as a target molecule for validation. Starting from approximately 1.7 × 1012 random sequences, a round‐by‐round high‐throughput sequencing showed clear enrichment of the FLAG epitope DYKDDD as well as revealing consensus FLAG epitope motif DYK(D/L/N)(L/Y/D/N/F)D. Enrichment of core FLAG motifs lacking one of the four key residues (DYKxxD) indicates that Tyr (Y) and Lys (K) appear as the two key residues essential for binding. Furthermore, the comparison between mRNA display and cDNA display method resulted in overall similar performance with slightly higher enrichment for mRNA display. We also show that gel purification steps in the refined PURE‐based display method improve conjugate formation efficiency and enhance the enrichment rate of FLAG epitope motifs in later rounds of selection especially for mRNA display. Overall, the generalized procedure and consistent performance of two different display methods achieved by the commercially available PURE system will be useful for future studies to explore the sequence and functional space of diverse polypeptides.
Fe–S clusters are essential cofactors mediating electron transfer in respiratory and metabolic networks. However, obtaining active [4Fe-4S] proteins with heterologous expression is challenging due to (i) the requirements for [4Fe-4S] cluster assembly, (ii) the O2 lability of [4Fe-4S] clusters, and (iii) copurification of undesired proteins (e.g., ferredoxins). Here, we established a facile and efficient protocol to express mature [4Fe-4S] proteins in the PURE system under aerobic conditions. An enzyme aconitase and thermophilic ferredoxin were selected as model [4Fe-4S] proteins for functional verification. We first reconstituted the SUF system in vitro via a stepwise manner using the recombinant SUF subunits (SufABCDSE) individually purified from E. coli. Later, the incorporation of recombinant SUF helper proteins into the PURE system enabled mRNA translation-coupled [4Fe-4S] cluster assembly under the O2-depleted conditions. To overcome the O2 lability of [4Fe-4S] Fe–S clusters, an O2-scavenging enzyme cascade was incorporated, which begins with formate oxidation by formate dehydrogenase for NADH regeneration. Later, NADH is consumed by flavin reductase for FADH2 regeneration. Finally, bifunctional flavin reductase, along with catalase, removes O2 from the reaction while supplying FADH2 to the SufBC2D complex. These amendments enabled a one-pot, two-step synthesis of mature [4Fe-4S] proteins under aerobic conditions, yielding holo-aconitase with a maximum concentration of ∼0.15 mg/mL. This renovated system greatly expands the potential of the PURE system, paving the way for the future reconstruction of redox-active synthetic cells and enhanced cell-free biocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.