Borophene and the analogs are attractive 2D-materials showing unique mechanical and electronic properties. In this study, the bottom-up synthesis of an atomic boron network possessing a completely planar skeleton was achieved from KBH 4 . The borophene-analog was stabilized by oxygen atoms positioned on the same plane, providing holes and the anionic state of the layer. Potassium cations between the layers enabled crystalline stacking of the layers, as well as dissolution in solvents as atomically thin layers. The conductivity measurements revealed the electronic feature. Unlike the interplane conducting property, almost zero activation energy like a metal was suggested from the in-plane measurement.
Borophene has been recently proposed as a next-generation two-dimensional material with promising electronic and optical properties. However, its instability has thus far limited its large-scale applications. Here, we investigate a liquid-state borophene analogue with an ordered layer structure derived from two-dimensional borophene oxide. The material structure, phase transition features and basic properties are revealed by using X-ray analysis, optical and electron microscopy, and thermal characterization. The obtained liquid crystal exhibits high thermal stability at temperatures up to 350 °C and an optical switching behaviour driven by a low voltage of 1 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.