BackgroundThe fungus Marssonina brunnea is a causal pathogen of Marssonina leaf spot that devastates poplar plantations by defoliating susceptible trees before normal fall leaf drop.ResultsWe sequence the genome of M. brunnea with a size of 52 Mb assembled into 89 scaffolds, representing the first sequenced Dermateaceae genome. By inoculating this fungus onto a poplar hybrid clone, we investigate how M. brunnea interacts and co-evolves with its host to colonize poplar leaves. While a handful of virulence genes in M. brunnea, mostly from the LysM family, are detected to up-regulate during infection, the poplar down-regulates its resistance genes, such as nucleotide binding site domains and leucine rich repeats, in response to infection. From 10,027 predicted proteins of M. brunnea in a comparison with those from poplar, we identify four poplar transferases that stimulate the host to resist M. brunnea. These transferas-encoding genes may have driven the co-evolution of M. brunnea and Populus during the process of infection and anti-infection.ConclusionsOur results from the draft sequence of the M. brunnea genome provide evidence for genome-genome interactions that play an important role in poplar-pathogen co-evolution. This knowledge could help to design effective strategies for controlling Marssonina leaf spot in poplar.
Tree age affects wood formation and yield. However, the underlying mechanisms are poorly understood, particularly at the molecular level. In this study, we investigated the transcriptomic changes of the uppermost main stems of Larix kaempferi in an entire rotation period using the RNA-Seq method. In total, ∼151 million reads were obtained from the stems of 1-, 2-, 5-, 10-, 25-, and 50-year-old L. kaempferi trees. Combining these with the published Illumina sequencing reads, 299,637 assembled transcripts were generated, of which 161,232 were annotated. Time series expression profiling identified 12,927 transcripts as differentially expressed genes (DEGs); function enrichment analysis of these DEGs showed that 459 gene ontology terms in the biological process category were enriched. These terms were associated with the processes of wood formation, such as cell differentiation, growth and death, and its hormonal regulation. Based on the expression patterns of L. kaempferi homologues of genes associated with ethylene, calcium, and cell wall expansion and synthesis, the regulatory network of tracheid growth was outlined. Altogether, the comparative transcriptomic analysis reported here demonstrated the molecular aspects of aging effects on L. kaempferi wood formation. The identification of genes involved in the regulatory network of tracheid growth provides a means of investigating the regulation of wood formation in gymnosperm trees and also offers potential targets for genetic manipulation to improve the properties of xylem fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.