BACKGROUND Heightened surveillance of acute febrile illness in China since 2009 has led to the identification of a severe fever with thrombocytopenia syndrome (SFTS) with an unknown cause. Infection with Anaplasma phagocytophilum has been suggested as a cause, but the pathogen has not been detected in most patients on laboratory testing. METHODS We obtained blood samples from patients with the case definition of SFTS in six provinces in China. The blood samples were used to isolate the causal pathogen by inoculation of cell culture and for detection of viral RNA on polymerase-chain-reaction assay. The pathogen was characterized on electron microscopy and nucleic acid sequencing. We used enzyme-linked immunosorbent assay, indirect immunofluorescence assay, and neutralization testing to analyze the level of virus-specific antibody in patients’ serum samples. RESULTS We isolated a novel virus, designated SFTS bunyavirus, from patients who presented with fever, thrombocytopenia, leukocytopenia, and multiorgan dysfunction. RNA sequence analysis revealed that the virus was a newly identified member of the genus phlebovirus in the Bunyaviridae family. Electron-microscopical examination revealed virions with the morphologic characteristics of a bunyavirus. The presence of the virus was confirmed in 171 patients with SFTS from six provinces by detection of viral RNA, specific antibodies to the virus in blood, or both. Serologic assays showed a virus-specific immune response in all 35 pairs of serum samples collected from patients during the acute and convalescent phases of the illness. CONCLUSIONS A novel phlebovirus was identified in patients with a life-threatening illness associated with fever and thrombocytopenia in China. (Funded by the China Mega-Project for Infectious Diseases and others.)
The SLS (Selective Laser Sintering, SLS) technology can directly manufacturing any complex structure, however, due to the limitation of the manufacturing engineering factor, the surface quality and the dimension accuracy of the green part are still an outstanding problem. So, the experimental methods were adopted to study the effect of part orientation on the machining accuracy, the part orientation will significantly affects the outline of the part due to the stair-stepping phenomenon, and then affects the surface quality and the dimension accuracy. The experimental samples of different part orientations including 0, 20, 45, 60, 90 degree were fabricated, and the results indicated that the stair-stepping phenomenon significantly affected by the part orientation, when the part orientation is 0, 45 and 90 degree, the dimension accuracy is best than other part orientation, it mean the stair-stepping phenomenon is smallest. So, when the part structure is complicated, the important structure dimension should be chosen the orientation 0, 45, or 90 degree
During vacuum counter-pressure casting, the vacuumization is an important stage for thin-wall and complicated aluminum alloy castings. Through testing and an analyzing numbers of pinhole and pinhole grade of aluminum alloy samples under different vacuum degree, the effect of vacuum degree on pinhole of vacuum counter- pressure casting molten aluminum alloy is studied. The results indicate vacuum degree has greater effect on pinhole of molten aluminum alloy in vacuumizing process. The smaller vacuum degree is, the more numbers of pinhole of the samples are, and the higher pinhole grade of the samples is. Therefore, when vacuum degree is small, pinhole of molten aluminum alloy appears easily. So the vacuum degree doesn’t choose too small, but for thin-wall and complicated aluminum alloy castings, the vacuum degree doesn’t choose too big either. Appropriate vacuum degree is from 20 KPa to 40 KPa.
The solidification pressure is one of the most important factors in the counter-gravity casting process. Through testing and analyzing the microstructures of aluminum alloy castings under different solidification pressure, the effect of different solidification pressure on the secondary dendrite arm spacing and grain size is studied. The results show that with the increase of the solidification pressure, the secondary dendrite arm spacing and the grain size of aluminum alloy decreases. When the solidification pressure is 250 KPa, the secondary dendrite arm of aluminum alloy is thick, the SDAS is 37.9μm, but when the solidification pressure increases to 450 KPa, the refinement of grain is obviously, and the SDAS is 20.7μm, which is reduced by 45.3% comparing to solidification under 250 KPa. Moreover, when solidification pressure higher, the effect of feeding force becomes more evident, and the dendrite is broken when the feeding force higher than the strength of dendrite. Therefore, the grain size becomes more and more uniform and thin, and the (SDAS) of aluminum alloy are more and more small.
Through analyzing and testing the microstructure and property of ZL114A aluminum alloy castings under the condition of alternating electromagnetic field, the effects of the intensity of alternating electromagnetic field on the microstructure and property of ZL114A aluminum alloy castings are studied. The results showed the intensity of alternating electromagnetic field had a great influence on the microstructure and property of ZL114A aluminum alloy castings. With the increase of the intensity of alternating electromagnetic field, the grain size of ZL114A aluminum alloy was more and more small, under the 10A current intensity, the grain was the finest. Whereas, with the increase of the intensity of alternating electromagnetic field further, the grain is more and more big. Meanwhile, in a certain rang of current intensity, the mechanical performance of ZL114A aluminum alloy had been improved comprehensively, its tensile intensity was improved 10MPa and the elongation was increased by 30%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.