Carbohydrate antigens with subterminal fucosylation have been implicated in the development and progression of several cancers, including hepatocellular carcinoma (HCC). Fluorescent sensors targeting fucosylated carbohydrate antigens could potentially be used for diagnostic and other applications. We have designed and synthesized a series of 26 diboronic acid compounds as potential fluorescent sensors for such carbohydrates. Among these compounds, 7q was able to fluorescently label cells expressing high levels of sLex (HEPG2) within a concentration range of 0.5 to 10 microM. This compound (7q) did not label cells expressing Lewis Y (HEP3B), nor cells without fucosylated antigens (COS7). This represents the first example of a fluorescent compound labeling cells based on cell surface carbohydrate structures.
[formula: see text] The application of molecular imprinting in making fluorescent sensors has been hampered by the lack of suitable fluorescent tags, which would respond to the binding event with significant fluorescence intensity changes. We have designed and synthesized a fluorescent monomer which allows for the preparation of fluorescent sensors of cis diols using molecular imprinting methods. This monomer was used for the preparation of sensitive fluorescent sensors for D-fructose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.