CommonsenseQA (CQA) (Talmor et al., 2019) dataset was recently released to advance the research on common-sense question answering (QA) task. Whereas the prior work has mostly focused on proposing QA models for this dataset, our aim is to retrieve as well as generate explanation for a given (question, correct answer choice, incorrect answer choices) tuple from this dataset. Our explanation definition is based on certain desiderata, and translates an explanation into a set of positive and negative common-sense properties (aka facts) which not only explain the correct answer choice but also refute the incorrect ones. We human-annotate a first-ofits-kind dataset (called ECQA) of positive and negative properties, as well as free-flow explanations, for 11K QA pairs taken from the CQA dataset. We propose a latent representation based property retrieval model as well as a GPT-2 based property generation model with a novel two step fine-tuning procedure. We also propose a free-flow explanation generation model. Extensive experiments show that our retrieval model beats BM25 baseline by a relative gain of 100% in F 1 score, property generation model achieves a respectable F 1 score of 36.4, and free-flow generation model achieves a similarity score of 61.9, where last two scores are based on a human correlated semantic similarity metric.
Password guessers are instrumental for assessing the strength of passwords. Despite their diversity and abundance, little is known about how different guessers compare to each other. We perform in-depth analyses and comparisons of the guessing abilities and behavior of password guessers. To extend analyses beyond number of passwords cracked, we devise an analytical framework to compare the types of passwords that guessers generate under various conditions (e.g., limited training data, limited number of guesses, and dissimilar training and target data). Our results show that guessers often produce dissimilar guesses, even when trained on the same data. We leverage this result to show that combinations of computationally-cheap guessers are as effective as computationallyintensive guessers, but more efficient. Our insights allow us to provide a concrete set of recommendations for system administrators when performing password checking.
CCS CONCEPTS• Security and privacy → Authentication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.