CommonsenseQA (CQA) (Talmor et al., 2019) dataset was recently released to advance the research on common-sense question answering (QA) task. Whereas the prior work has mostly focused on proposing QA models for this dataset, our aim is to retrieve as well as generate explanation for a given (question, correct answer choice, incorrect answer choices) tuple from this dataset. Our explanation definition is based on certain desiderata, and translates an explanation into a set of positive and negative common-sense properties (aka facts) which not only explain the correct answer choice but also refute the incorrect ones. We human-annotate a first-ofits-kind dataset (called ECQA) of positive and negative properties, as well as free-flow explanations, for 11K QA pairs taken from the CQA dataset. We propose a latent representation based property retrieval model as well as a GPT-2 based property generation model with a novel two step fine-tuning procedure. We also propose a free-flow explanation generation model. Extensive experiments show that our retrieval model beats BM25 baseline by a relative gain of 100% in F 1 score, property generation model achieves a respectable F 1 score of 36.4, and free-flow generation model achieves a similarity score of 61.9, where last two scores are based on a human correlated semantic similarity metric.
This paper describes the design, implementation, and evaluation of Otak, a system that allows two non-colluding cloud providers to run machine learning (ML) inference without knowing the inputs to inference. Prior work for this problem mostly relies on advanced cryptography such as two-party secure computation (2PC) protocols that provide rigorous guarantees but suffer from high resource overhead. Otak improves efficiency via a new 2PC protocol that (i) tailors recent primitives such as function and homomorphic secret sharing to ML inference, and (ii) uses trusted hardware in a limited capacity to bootstrap the protocol. At the same time, Otak reduces trust assumptions on trusted hardware by running a small code inside the hardware, restricting its use to a preprocessing step, and distributing trust over heterogeneous trusted hardware platforms from different vendors. An implementation and evaluation of Otak demonstrates that its CPU and network overhead converted to a dollar amount is 5.4-385× lower than state-of-the-art 2PC-based works. Besides, Otak's trusted computing base (code inside trusted hardware) is only 1,300 lines of code, which is 14.6-29.2× lower than the code-size in prior trusted hardware-based works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.