<p>Image segmentation is a challenging process in numerous applications. Region growing is one of the segmentation techniques as a basis for the Seeded Region Growing method. A novel real time integrated method was developed in the current work to locate the segmented region of interest of an image based on the Region Growing segmentation method along with the thresholding supported image segmentation. Through the proposed work, a homogeneity based on pixel intensity was suggested as well as the threshold value can be decided via a variety of schemes such as manual selection, Iterative method, Otsu’s method, local thresholding to obtain the best possible threshold. The experimental results were performed on different images obtained from an Alpert dataset. A comparative study was arried out with the human segmented image, threshold based region growing, and the proposed integrated method. The results established that the proposed integrated method outperformed the region growing method in terms of the recall and F-score. Although, it had comparable recall values with that gained by the human segmented images. It was noted that as the image under test had a dark background with the brighter object, thus the proposed method provided the superior recall value compared to the other methods.</p>
Microscopic image analysis is one of the challenging tasks due to the presence of weak correlation and different segments of interest that may lead to ambiguity. It is also valuable in foremost meadows of technology and medicine. Identification and counting of cells play a vital role in features extraction to diagnose particular diseases precisely. Different segments should be identified accurately in order to identify and to count cells in a microscope image. Consequently, in the current work, a novel method for cell segmentation and identification has been proposed that incorporated marking cells. Thus, a novel method based on cuckoo search after pre-processing step is employed. The method is developed and evaluated on light microscope images of rats' hippocampus which used as a sample for the brain cells. The proposed method can be applied on the color images directly. The proposed approach incorporates the McCulloch's method for lévy flight production in cuckoo search (CS) algorithm. Several objective functions, namely Otsu's method, Kapur entropy and Tsallis entropy are used for segmentation. In the cuckoo search process, the Otsu's between class variance, Kapur's entropy and Tsallis entropy are employed as the objective functions to be optimized. Experimental results are validated by different metrics, namely the peak signal to noise ratio (PSNR), mean square error, feature similarity index and CPU running time for all the test cases. The experimental results established that the Kapur's entropy segmentation method based on the modified CS required the least computational time compared to Otsu's between-class variance segmentation method and the Tsallis entropy segmentation method. Nevertheless, Tsallis entropy method with optimized multi-threshold levels achieved superior performance compared to the other two segmentation methods in terms of the PSNR.
Coronavirus disease 2019 or COVID-19 is one of the biggest challenges which are being faced by mankind. Researchers are continuously trying to discover a vaccine or medicine for this highly infectious disease but, proper success is not achieved to date. Many countries are suffering from this disease and trying to find some solution that can prevent the dramatic spread of this virus. Although the mortality rate is not very high, the highly infectious nature of this virus makes it a global threat. RT-PCR test is the only means to confirm the presence of this virus to date. Only precautionary measures like early screening, frequent hand wash, social distancing use of masks, and other protective equipment can prevent us from this virus. Some researches show that the radiological images can be quite helpful for the early screening purpose because some features of the radiological images indicate the presence of the COVID-19 virus and therefore, it can serve as an effective screening tool. Automated analysis of these radiological images can help the physicians and other domain experts to study and screen the suspected patients easily and reliably within the stipulated amount of time. This method may not replace the traditional RT-PCR method for detection but, it can be helpful to filter the suspected patients from the rest of the community that can effectively reduce the spread in the of this virus. A novel method is proposed in this work to segment the radiological images for the better explication of the COVID-19 radiological images. The proposed method will be known as SuFMoFPA (Superpixel based Fuzzy Modified Flower Pollination Algorithm). The type 2 fuzzy clustering system is blended with this proposed approach to get the better-segmented outcome. Obtained results are quite promising and outperforming some of the standard approaches which are encouraging for the practical uses of the proposed approach to screening the COVID-19 patients.
Biomedical imaging is considered main procedure to acquire valuable physical information about the human body and some other biological species. It produces specialized images of different parts of the biological species for clinical analysis. It assimilates various specialized domains including nuclear medicine, radiological imaging, Positron emission tomography (PET), and microscopy. From the early discovery of X-rays, progress in biomedical imaging continued resulting in highly sophisticated medical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound, Computed Tomography (CT), and lungs monitoring. These biomedical imaging techniques assist physicians for faster and accurate analysis and treatment. The present chapter discussed the impact of intelligent computing methods for biomedical image analysis and healthcare. Different Artificial Intelligence (AI) based automated biomedical image analysis are considered. Different approaches are discussed including the AI ability to resolve various medical imaging problems. It also introduced the popular AI procedures that employed to solve some special problems in medicine. Artificial Neural Network (ANN) and support vector machine (SVM) are active to classify different types of images from various imaging modalities. Different diagnostic analysis, such as mammogram analysis, MRI brain image analysis, CT images, PET images, and bone/retinal analysis using ANN, feed-forward back propagation ANN, probabilistic ANN, and extreme learning machine continuously. Various optimization techniques of ant colony optimization (ACO), genetic algorithm (GA), particle swarm optimization (PSO) and other bio-inspired procedures are also frequently conducted for feature extraction/selection and classification. The advantages and disadvantages of some AI approaches are discussed in the present chapter along with some suggested future research perspectives.
The Job-Shop Scheduling Problem (JSSP)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.