Greek ladders with diffraction-limited array foci provide a probability to realize array imaging with equal intensity. Here, taking the ancient Theon sequence as an example, we design the optical structure and have measured the focusing properties by digital holography. Then, we verify the multiplanar imaging with different magnifications by experiment. The experimental results agree well with the theoretical analysis. In addition, bi-Fourier planes filtering technology is proposed to solve the problem of crosstalk between different imaging planes to further improve the imaging resolution. Therefore, we can freely design the focal length of the bifocal lens to achieve high-quality imaging at different resolutions. As a kind of amplitude-only diffractive lens, multifocal imaging provides a possibility of application in array biological imaging, ophthalmology, and an optical zoom system.
High-power laser pulse transmitted by phase modulation with certain spectrum distribution can suppress the buildup of transverse stimulated Brillouin scattering (TSBS) in large aperture laser optics and smooth the speckle pattern illuminating the target by spectral smoothing dispersion (SSD). In this paper, based on the requirements of the double-cone ignition scheme including simultaneously realizing that the focal spot is variable at different times in size and the spatial intensity distribution is uniform, we propose a novel phase modulation technology with a rapid variable modulation index in the nanosecond scale instead of utilizing conventional constant amplitude sinusoidal curve. The relevant simulation results indicate that the proposed technology can realize the dynamic nanosecond spectral distribution and the trend correlates with the variety of modulation index. Particularly, we indirectly measure this rapid changeable spectral distribution based on the mapping relationship between frequency and time domain. We believe that the new technology is expected to meet the requirements of SSD and the dynamic focus simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.