The role of Fusobacterium nucleatum, often associated with intestinal diseases, in remission of dextran sulfate sodium (DSS)-induced colitis was investigated. Female mice were divided into groups DC (DSS control) and DF (DSS + F.nucleatum). F.nucleatum (1.0 × 1010 cfu/mouse/day) in PBS was orally given to DF, while DC had PBS only. All mice had DSS in drinking water. In Experiment 1, mice underwent two inflammation phases, an in-between recovery phase, and had their disease activity indices (DAI) calculated. Experiment 2 was similarly conducted, except that mice were dissected 3 days post-recovery, and had blood and colonic mucosal samples collected. In Experiment 1, DF had significantly (P < .05) higher DAI than DC, during the recovery and 2nd inflammation phases. In Experiment 2, genus Bacteroides was significantly (P < .05) higher and family Lachnospiraceae significantly lower in cecal mucosa-associated microbiota of DF than in that of DC. We concluded that F.nucleatum can impeded colitis remission.
We previously reported that the major component of Enterococcus faecalis strain EC-12 (EC-12) inducing production of Interleukin (IL)-12 in mouse/human immune cells was its own RNA. This study aimed to investigate if RNase A-treated EC-12 could also produce IL-10 and to evaluate the possible effects of IL-10 produced by RNase A-treated EC-12. Three experiments were conducted: (1) Assessment of the effect of RNase A-treated EC-12 on transcriptome profiles and biological pathways in human peripheral blood mononuclear cells; (2) Determination of cytokine concentration in its culture supernatants; and (3) Supplementation of RNase A-treated EC-12 (RN) to mice with dextran sodium sulfate-induced colitis. Treatment of EC-12 with RNase A inhibited inflammatory response including the potency to induce IL-12 production, while it did not affect IL-10 production (Experiment 1 and 2). Colitis symptoms were milder in RN than in PBS-supplemented controls (Experiment 3). RNase A-treated EC-12 likely became an anti-inflammatory agent primarily inducing IL-10 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.