Abstract:The Kondapalli Layered Complex (KLC) is a dismembered mafic-ultramafic layered intrusion, mainly composed of gabbroic and anorthositic rocks with subordinate ultramafics and chromitite. Chromitite occurs as lenses, pods, bands and disseminations. Platinum group of minerals (PGMs) occur as inclusions within chromite and silicates. The study indicates an inhomogeneous distribution of PGMs and distinct dominance of IPGEs over the PPGEs. The average ΣPGE content of chromite of KLC varies from 64 ppb to 576 ppb with Pt ranging from 5 to 495 ppb, Pd 5 to 191 ppb, Ir 3 to 106 ppb, Ru 3 to 376 ppb and Rh 3 to 135 ppb. The PGMs identified in the KLC indicate primary deposition of the IPGE, preceding chromite, indicating its orthomagmatic nature. Most of the PGM grains are usually below 10 µm. The identified PGMs are Laurite (RuS 2 ), irarsite (Ir, As, S), iridosmine (Os,Ir), undetermined Os-Ir sulphide and Ru-Os-Ir-Zn alloys. Chromite also contains inclusions of pentlandite, millerite, chalcopyrite and pyrite. Study indicating that the KLC have orthomagmatic origin for PGE which are dominated by IPGE group and formed under surpa-subduction zone peridotite setting.
The Proterozoic Chimalpahad Anorthosite Complex (CAC) is a deformed and dismembered complex in South India comprising of anorthosite-leucogabbro-gabbro-ultramafic rocks. It is located in the Nellore-Khammam Schist Belt (NKSB) within the contact zone between the Eastern Dharwar Craton (EDC) and the Eastern Ghats Belt (EGB). The chromitites occur as small dismembered lensoidal bodies within the ultramafic rocks. Presence of micrometric inclusions of iridium-like platinum-group minerals (IPGM), such as laurite (RuS2), erlichmanite (OsS2), irarsite (IrAsS), and Ir-Os-Ru alloys, is reported for the first time in the CAC chromites. The chromite cumulates preserve magmatic character (Cr#: 0.61 to 0.77; Mg#: 0.29 to 0.55), while disseminated chromites and rims of some grains (Cr#: 0.59 to 0.89; Mg#: 0.10 to 0.25) show postmagmatic modifications. The chromites are characterised by higher Cr and Al contents and lower Fe and Ti contents. The mineral chemistry of chromites such as Cr# and Mg# contents of Al2O3 (10.05–20.07 wt.%) and TiO2 (0.1 to 0.25 wt.%) typically suggests that the CAC chromitites and their ultramafic hosts were generated from the S-undersaturated boninite melt in a magmatic arc in suprasubduction tectonic setting. A general negative slope of bulk-rock PGE distribution with upward convex pattern is observed for the CAC chromitites in the chondrite-normalized plot. These geochemical and mineral chemical characters in addition to location of the chromitites and the CAC in the tectonic zone between Eastern Dharwar Craton and Eastern Ghats Mobile Belt point towards ophiolitic affinity of the CAC chromitites. Laurite (RuS2) grains are trapped close to the cores of chromites, whereas erlichmanites (OsS2) are trapped away from the cores. Textural relations indicate primary orthomagmatic nature of laurite and Or-Ir-Ru alloys and their precipitation prior to or concomitant with chromite from an S-undersaturated melt at ~1200–1300°C and log fS2 varying between −2 and −1.3. Ru-Os disulfide and erlichmanite crystallized subsequently with a gradual decrease in temperature in the differentiating ultramafic magma. Precipitation of irarsite and base-metal sulfides can be attributed to local and rapid fluctuations of temperature, fS2, and fAs during the formation of the chromitites due to influx of fresh batch of melts or crystallization in an open magmatic system. The compositional variations of laurite-erlichmanite record heterogeneous physicochemical environment during their crystallization. In addition to zoning, preservation of IPGMs in the CAC chromites points towards fast cooling of the magma possibly associated with rapid exhumation of the chromitites and their ultramafic hosts from the roots of the subcontinental lithospheric mantle (SCLM) towards their final emplacement into the crust. Occurrence of the CAC along a linear extension with the Kondapalli Ultramafic Complex and deformed remnants of ophiolites (Kandra and Kanigiri complexes) along the eastern margin of the Eastern Dharwar Craton (EDC) bordering the Eastern Ghats Belt (EGB) indicates this zone to be a Proterozoic convergent margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.