AbstractThe conventional coagulation technique of textile wastewater treatments is plagued with the issue of low removal rate of pollutants and generation of a large quantity of sludge. Recently, electrocoagulation (EC) technique gained immense attention due to its efficiency. The technique involves dissolution of the sacrificial anodes to provide an active metal hydroxide as a strong coagulant that destabilizes and amasses particles and then removes them by precipitation or adsorption. EC process is influenced by operating parameters such as applied current density, electrodes material and configuration, type of electrical connection, pH and conductivity of the solution, and mixing state. Consequently, this work reviewed the major and minor reactions of EC process with operational parameters, design of EC cell, mass transfer studies and modeling, and industrial wastewater applications. The work also includes comparison of EC technique with conventional coagulation and combinations with other techniques. Special emphasis is on removal of pollutants from textile wastewater. Further, the electrical energy supplies and cost analysis are also discussed. Even though several publications have covered EC process recently, no review work has treated the systematic process design and how to minimize the effect of passivation layer deposited on the surface of the electrodes. EC process with rotating electrodes has been recommended to reduce this phenomenon. The effect of electrodes geometry is considered to enhance the conductivity of the cell and reduce energy consumption. The studies of ionic mass transfer were not implemented before special by limiting current method during the EC process. Moreover, no aforementioned studies used computational fluid dynamics modeling to present the mass transfer inside the EC reactor.
Inadequately treated or untreated wastewater greatly contribute to the release of unwanted toxic contaminants into water bodies. Some of these contaminants are persistent and bioaccumulative, becoming a great concern as they are released into the environment. Despite the abundance of wastewater treatment technologies, the adsorption method overall has proven to be an excellent way to treat wastewater from multiple industry sources. Because of its significant benefits, i.e., easy availability, handling, and higher efficiency with a low cost relative to other treatments, adsorption is opted as the best method to be used. However, biosorption using naturally found seaweeds has been proven to have promising results in removing pollutants, such as dyes from textile, paper, and the printing industry, nitrogen, and phosphorous and phenolic compounds, as well as heavy metals from various sources. Due to its ecofriendly nature together with the availability and inexpensiveness of raw materials, biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants from wastewater effectively. In this article, the use of low-cost adsorbent (seaweed) for the removal of pollutants from wastewater has been reviewed. An extensive table summarises the applicability of seaweed in treating wastewater. Literature reported that the majority of research used simulated wastewater and minor attention has been given to biosorption using seaweed in the treatment of real wastewater.
In recent decades, Malaysia has been known as one of the world's leading producers and exporters of palm oil products. Every year, the number of palm oil mills increases rapidly, thus increasing the capacity of fresh fruit bunch waste or effluent discharge. Based on the data from the Malaysian Palm Oil Board in 2012, Malaysia produced 99.85 million tons of fresh fruit bunch (FFB) per year. However, about 5-5.7 tons of water was required in order to sterilize the palm fruit bunches and clarify the extracted oil to produce 1 ton of crude palm oil resulting in 50% of the water turning into palm oil mill effluent (POME). POME is one of the major environmental pollutants in Malaysia. The characteristics of POME and its behavior, if discharged directly, in water are described in this chapter. The suspended solid and nutrient content in POME could be able to support the growth of algae. This chapter aims to demonstrate that POME could be used as a main source for algae production, and this effluent is one of the main environmental problems in the tropical region especially in Malaysia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.