Newborn mice and piglets exhibit natural heart regeneration after myocardial infarction (MI). Discovering other mammals with this ability would provide evidence that neonatal cardiac regeneration after MI may be a conserved phenotype, which if activated in adults could open new options for treating ischemic cardiomyopathy in humans. Here, we hypothesized that newborn rats undergo natural heart regeneration after MI. Using a neonatal rat MI model, we performed left anterior descending coronary artery ligation or sham surgery in one-day-old rats under hypothermic circulatory arrest (n = 74). Operative survival was 97.3%. At 1 day post-surgery, rats in the MI group exhibited significantly reduced ejection fraction (EF) compared to shams (87.1% vs. 53.0%, p < 0.0001). At 3 weeks post-surgery, rats in the sham and MI groups demonstrated no difference in EF (71.1% vs. 69.2%, respectively, p = 0.2511), left ventricular wall thickness (p = 0.9458), or chamber diameter (p = 0.7801). Masson’s trichome and picrosirius red staining revealed minimal collagen scar after MI. Increased numbers of cardiomyocytes positive for 5-ethynyl-2′-deoxyuridine (p = 0.0072), Ki-67 (p = 0.0340), and aurora B kinase (p = 0.0430) were observed within the peri-infarct region after MI, indicating ischemia-induced cardiomyocyte proliferation. Overall, we present a neonatal rat MI model and demonstrate that newborn rats are capable of endogenous neocardiomyogenesis after MI.
Peripheral artery disease and the associated ischemic wounds are substantial causes of global morbidity and mortality, affecting over 200 million people worldwide. Although advancements have been made in preventive, pharmacologic, and surgical strategies to treat this disease, ischemic wounds, a consequence of end-stage peripheral artery disease, remain a significant clinical and economic challenge. Synechococcus elongatus is a cyanobacterium that grows photoautotrophically and converts carbon dioxide and water into oxygen. We present a novel topical biologic gel containing S. elongatus that provides oxygen via photosynthesis to augment wound healing by rescuing ischemic tissues caused by peripheral artery disease. By using light rather than blood as a source of energy, our novel topical therapy significantly accelerated wound healing in two rodent ischemic wound models. This novel topical gel can be directly translated to clinical practice by using a localized, portable light source without interfering with patients’ daily activities, demonstrating potential to generate a paradigm shift in treating ischemic wounds from peripheral artery disease. Its novelty, low production cost, and ease of clinical translatability can potentially impact the clinical care for millions of patients suffering from peripheral arterial disease.
Extraoral maxillofacial rehabilitation of patients with large midfacial defects has always perplexed the prosthodontist. Retention of such large facial prosthesis can be challenging due to its increased size and weight. This clinical report describes the technique of prosthetic rehabilitation of a patient with large midfacial defect using a hollow light-weight intraoral-extraoral combination prosthesis utilizing rare-earth magnets as a retention tool. This prosthesis dramatically improved the function, esthetics and comfort, thus, enabling him to lead a normal life.
How to cite this article
Geethu RM, Anilkumar S, Rajesh C, Uniyal S. Prosthetic Rehabilitation of a Lateral Midfacial Defect Combined with Hemimandibulectomy using Multiple/Sectional Prosthesis. Int J Prosthodont Restor Dent 2014;4(4):131-137.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.