The design of mobility-aware framework for edge/fog computing for IoT systems with back-end cloud is gaining research interest. In this paper, a mobility-driven cloud-fog-edge collaborative real-time framework, Mobi-IoST, has been proposed, which has IoT, Edge, Fog and Cloud layers and exploits the mobility dynamics of the moving agent. The IoT and edge devices are considered to be the moving agents in a 2-D space, typically over the road-network. The framework analyses the spatio-temporal mobility data (GPS logs) along with the other contextual information and deploys machine learning algorithm to predict the location of the moving agents (IoT and Edge devices) in real-time. The accumulated spatio-temporal traces from the moving agents are modelled using probabilistic graphical model. The major features of the proposed framework are: (i) hierarchical processing of the information using IoT-Edge-Fog-Cloud architecture to provide better QoS in real-time applications, (ii) uses mobility information for predicting next location of the agents to deliver processed information, and (iii) efficiently handles delay and energy consumption. The performance evaluations yield that the proposed mobility prediction algorithm has approximately 93% accuracy and reduced the delay and power by approximately 23-26% and 37-41% respectively than compared to the existing mobility-aware task delegation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.