Due to their antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such AgNPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. AgNPs can cross the placenta and blood–brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to AgNPs disrupts the microbiome–gut–brain axis. To examine for such effects, C57BL6 female mice were exposed orally to AgNPs at a dose of 3 mg/kg BW or vehicle control 2 weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to AgNPs exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of AgNPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.
We sought to assess a smartphone-based, gold nanoparticle-based colorimetric lateral flow immunoassay paper sensor for quantifying urine 8-hydroxy-2 9 -deoxyguanosine (8-OHdG) as a biomarker for diabetic retinopathy (DR) screening.METHODS: Paper strips incorporate gold nanoparticle-8-OHdG antibody conjugates that produce color changes that are proportional to urine 8-OHdG and that are discernible on a smartphone camera photograph. Paper strip accuracy, precision, and stability studies were performed with 8-OHdG solutions of varying concentrations. Urine was collected from 97 patients with diabetes who were receiving DR screening examinations, including 7-field fundus photographs. DR was graded by standard methods as either low risk (no or mild DR) or high risk (moderate or severe DR). Paper sensor assays were performed on urine samples from patients and 8-OHdG values were correlated with DR grades. The differences in 8-OHdG values between the low-and highrisk groups were analyzed for outliers to identify the threshold 8-OHdG value that would minimize falsenegative results.RESULTS: Lateral flow immunoassay paper strips quantitatively measure 8-OHdG and were found to be accurate, precise, and stable. Average urine 8-OHdG concentrations in study patients were 22 ± 10 ng/mg of creatinine in the low-risk group and 55 ± 11 ng/mg of creatinine in the high-risk group. Screening cutoff values of 8-OHdG >50 ng/mg of creatinine or urine creatinine >1.5 mg minimized screen failures, with 91% sensitivity and 81% specificity.CONCLUSIONS: Urinary 8-OHdG is a useful biomarker to screen DR. Quantitative 8-OHdG detection with the lateral flow immunoassay paper sensor and smartphone camera demonstrates its potential in DR screening.
Current methods for capturing circulating tumor cells (CTCs) are based on the overexpression of cytokeratin (CK) or epithelial cell-adhesion molecule (EpCAM) on cancer cells. However, during the process of metastasis, tumor cells undergo epithelial-to-mesenchymal transition (EMT) that can lead to the loss of CK/EpCAM expression. Therefore, it is vital to develop a capturing technique independent of CK/EpCAM expression on the cancer cell. To develop this technique, it is important to identify common secondary oncogenic markers overexpressed on tumor cells before and after EMT. We analyzed the biomarker expression levels in tumor cells, before and after EMT, and found two common proteinshuman epidermal growth factor receptor 2 (Her2) and epidermal growth factor receptor (EGFR) whose levels remained unaffected. So, we synthesized immunomagnetic iron nanocubes covalently conjugated with antibodies of Her2 or EGFR to capture cancer cells irrespective of the EMT status. The nanocubes showed high specificity (6−9-fold) in isolating the cancer cells of interest from a mixture of cells spiked in serum. We characterized the captured cells for identifying their EMT status. Thus, we believe the results presented here would help in the development of novel strategies for capturing both primary and metastatic cancer cells from patients' blood to develop an effective treatment plan.
Due to their antimicrobial properties, silver nanoparticles (NPs) are used in a wide range of consumer products that includes topical wound dressings, coatings for biomedical devices, and food-packaging to extend the shelf-life. Despite their beneficial antimicrobial effects, developmental exposure to such NPs may lead to gut dysbiosis and long-term health consequences in exposed offspring. Silver NPs can cross the placenta and blood-brain-barrier to translocate in the brain of offspring. The underlying hypothesis tested in the current study was that developmental exposure of male and female mice to silver NPs disrupts the microbiome-gut-brain axis. To examine for such effects, C57BL6 female mice were exposed orally to silver NPs at a dose of 3 mg/kg BW or vehicle control two weeks prior to breeding and throughout gestation. Male and female offspring were tested in various mazes that measure different behavioral domains, and the gut microbial profiles were surveyed from 30 through 120 days of age. Our study results suggest that developmental exposure results in increased likelihood of engaging in repetitive behaviors and reductions in resident microglial cells. Echo-MRI results indicate increased body fat in offspring exposed to NP exhibit. Coprobacillus spp., Mucispirillum spp., and Bifidobacterium spp. were reduced, while Prevotella spp., Bacillus spp., Planococcaceae, Staphylococcus spp., Enterococcus spp., and Ruminococcus spp. were increased in those developmentally exposed to NPs. These bacterial changes were linked to behavioral and metabolic alterations. In conclusion, developmental exposure of silver NPs results in long term gut dysbiosis, body fat increase and neurobehavioral alterations in offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.