The field enhancement factor at the emitter tip and its variation in a close neighbourhood determines the emitter current in a Fowler-Nordheim like formulation. For an axially symmetric emitter with a smooth tip, it is shown that the variation can be accounted by a cosθ˜ factor in appropriately defined normalized co-ordinates. This is shown analytically for a hemiellipsoidal emitter and confirmed numerically for other emitter shapes with locally quadratic tips.
Multi-stage cathodes are promising candidates for field emission due to the multiplicative effect in local field predicted by the Schottky conjecture and its recently corrected counterpart [Biswas, J. Vac. Sci. Technol. B 38, 023208 (2020)]. Due to the large variation in length scales even in a 2-stage compound structure consisting of a macroscopic base and a microscopic protrusion, the simulation methodology of a gated field emitting compound diode needs to be revisited. As part of this strategy, the authors investigate the variation of local field on the surface of a compound emitter near its apex and find that the generalized cosine law continues to hold locally near the tip of a multi-scale gated cathode. This is used to emit electrons with appropriate distributions in position and velocity components with a knowledge of only the electric field at the apex. The distributions are consistent with contemporary free-electron field emission model and follow from the joint distribution of launch angle, total energy, and normal energy. For a compound geometry with local field enhancement by a factor of around 1000, a hybrid model is used where the vacuum field calculated using COMSOL is imported into the Particle-In-Cell code PASUPAT, where the emission module is implemented. Space charge effects are incorporated in a multi-scale adaptation of PASUPAT using a truncated geometry with “open electrostatic boundary” condition. The space charge field, combined with the vacuum field, is used for particle-emission and tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.