Abstract-Disc brake is one of the modern technology in the braking system. It converts the motion of the vehicle wheel into heat by using friction between disc rotor and pads in order to retard the vehicle's velocity. When sudden brakes are applied, friction between disc and pad tremendously increases due to which heat is generated in this system. Heat generated due to friction induces high-temperature regions over the disc. Because of localized heating of disc surface, a thermal gradient is developed over disc surface which may plastically deform the disc. Due to overheating, hotspots generation and thermal judders phenomenon occurring on the disc, failure of the disc is witnessed in the form of cracks over disc surface. This results in a decrement of braking efficiency and an overall drop in braking performance. This paper draws attention to selective issues regarding the failure of brakes due to overheating and methods to reduce such kind of failure.
Voltage-gated sodium channel Na V 1.7 is a genetically validated target for pain. Identification of Na V 1.7 inhibitors with all of the desired properties to develop as an oral therapeutic for pain has been a major challenge. Herein, we report systematic structure−activity relationship (SAR) studies carried out to identify novel sulfonamide derivatives as potent, selective, and statedependent Na V 1.7 inhibitors for pain. Scaffold hopping from benzoxazine to chroman and indane bicyclic system followed by thiazole replacement on sulfonamide led to identification of lead molecules with significant improvement in solubility, selectivity over Na V 1.5, and CYP2C9 inhibition. The lead molecules 13, 29, 32, 43, and 51 showed a favorable pharmacokinetics (PK) profile across different species and robust efficacy in veratridine and formalin-induced inflammatory pain models in mice. Compound 51 also showed significant effects on the CCI-induced neuropathic pain model. The profile of 51 indicated that it has the potential for further evaluation as a therapeutic for pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.