Background Carica papaya is an eminent medicinal plant used all over the world to treat several diseases like malaria, dengue, inflammation, and skin infections. In this study, preliminary phytochemical screening for C. papaya flowers was carried out using different methods as TLC screening and UV-spectroscopy along with evaluation of antioxidant and antibacterial activities. Methods were also developed for TLC and UV-visible spectroscopic analysis of the extracts. Results Results of phytochemical screening revealed that the methanol extract contains alkaloids, flavonoids, saponins, and tannins as major components. Saponins and tannins were present in chloroform and n-hexane extracts; however, steroids and flavonoids were additionally found in n-hexane extract. Flavonoids, saponins, and tannins were present in aqueous extract of papaya flower. TLC and UV-visible spectroscopy also confirmed the presence of phenolics and flavonoids in different plant extracts. The total phenolic content (0.76 ± 0.04 mg GAE/g dry weight) and total flavonoid content (1.53 ± 0.10 mg QE/g dry weight) were the highest in the n-hexane extract of the flower. Antioxidant activity using DPPH free radical scavenging assay was the highest in n-hexane extract (64.07%). Antibacterial screening was carried out using well diffusion method against two pathogens Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. The antibacterial assays of the extracts displayed the highest activity in methanolic extract against both E. coli (4.00 ± 0.08) and B. subtilis (01.00 ± 0.05). Conclusion This is the first report for the presence of alkaloids and saponins in C. papaya flowers. Also, it is the first report for determination of total phenolics and total flavonoids in C. papaya flowers. Methanolic extract displayed considerable antibacterial activity against E. coli and B. subtilis. The antioxidant and antibacterial properties of phytochemical extracts make them attractive alternative complementary medicines. More chemical investigation for chemical constituents is important for further drug development programs. Graphical abstract
The excessive usage of antibiotics in humans and veterinary medicine has lead to the emergence of antibiotic resistance and now requires the use of novel antibiotics. There has been increased interest towards plants as source of drugs because of their pharmacological potency and long traditional usage. The aim of the current study was to evaluate bioactive components, antioxidant, and anti-inflammatory activities of the leaf extracts of Murraya paniculata, a plant traditionally used in Indian medicinal system. Evaluations were made for phytochemical analysis, antioxidant, membrane stabilizing, and antimicrobial activities. The methanol extract displayed the highest flavonoid and phenolic content, the acetone extract demonstrated considerable ABTS inhibitory activity (IC50value:555.18 ± 1.68 µg/mL) and the hexane extract exhibited highest H2O2 radical scavenging activity (IC50value: 509.84 ± 3.03 µg/mL). The aqueous extract displayed 19.4 ± 0.66% RBC hemolysis and 80.5 ± 0.66% protection caused by hypotonic solution at high concentration of the extract. The fractions of hexane extract revealed a higher zone of inhibition than crude extract. The major components found in the fractions were cyclohexane (40.11%) and 3-(6-Methoxy-3-methyl-2-benzofuranyl) Cyclohexanone (13.68%) as analyzed by GC–MS/MS technique. The current results validate the traditional use of the M. paniculata and warrant its potential in drug development programs in further investigations.
Background Andrographis paniculata is a well-known medicinal plant that contains various classes of bioactive secondary metabolites. It is widely used by the traditional medicinal healers for treatment of malaria and other diseases. There is an urgent need for screening of potent novel compounds from the methanol extract of A. paniculata. Earlier, we obtained appreciable in vitro anti-malarial activity (IC50-10.75 μg/ml) in the same plant. In current study, we developed novel analytical methods for rapid identification and characterization of diterpenes and flavones using chromatographic and spectroscopic techniques and identified major compounds that might possess anti-malarial activities. Results Based on the chromatographic and mass spectrometric features, we have identified a total of 74 compounds (25 compounds from positive ion mode; 49 compounds from negative ion mode). The mass spectrum data predicted andrographolide (15%) presence in the highest amount in both positive and negative ion modes. Based on the percentage purity, Andrographolide and skullcapflavone I was selected as representative class of diterpenes and flavones for fragmentation studies. Conclusions The result led to identification of Neoandrographolide, andrographolactone, 14-dehydroxy-11,12-didehydroandrographolide, skullcapflavone I, and 5-Hydroxy-2′,7,8-tri methoxy flavone from the methanolic extract of A. paniculata that is used in traditional medicine by tribal healers of Amarkantak region for treating malaria. These could be lead compounds for the development of novel anti-malarial drugs.
Background The objectives of the current study are to evaluate the traditionally used medicinal plants Andrographis paniculata for in vitro anti-malarial activity against human malarial parasite Plasmodium falciparum and to further characterize the anti-malarial active extract of A. paniculata using spectroscopic and chromatographic methods. Results The chloroform extract of A. paniculata displayed anti-malarial activity with IC50 values 6.36 μg/ml against 3D7 strain and 5.24 μg/ml against K1 strains respectively with no evidence of significant cytotoxicity against mammalian cell line (CC50 > 100 μg/ml). LC-MS analysis of the extract led to the identification of 59 compounds based on their chromatographic and mass spectrometric features (a total of 35 compounds are present in positive ion and 24 compounds in negative ion mode). We have identified 5 flavonoids and 30 compounds as diterpenoids in positive ion mode, while in the negative mode all identified compounds were diterpenoids. Characterization of the most promising class of compound diterpenoids using HPLC-LC-ESI-MS/MS was also undertaken. Conclusions The in vitro results undoubtedly validate the traditional use of A. paniculata for the treatment of malaria. The results have led to the identification of diterpenoids from IGNTU_06 extract as potential anti-malarial compounds that need to be further purified and analyzed in anti-malarial drug development programs. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.