This paper describes an 8-channel gel-free EEG/electrode-tissue impedance (ETI) acquisition system, consisting of nine active electrodes (AEs) and one back-end (BE) analog signal processor. The AEs amplify the weak EEG signals, while their low output impedance suppresses cable-motion artifacts and 50/60 Hz mains interference. A common-mode feed-forward (CMFF) scheme boosts the CMRR of the AE pairs by 25 dB. The BE post-processes and digitizes the analog outputs of the AEs, it also can configure them via a single-wire pulse width modulation (PWM) protocol. Together, the AEs and BE are capable of recording 8-channel EEG and ETI signals. With EEG recording enabled, ETIs of up to 60 kΩ can be measured, which increases to 550 kΩ when EEG recording is disabled. Each EEG channel has a 1.2 GΩ input impedance (at 20 Hz), 1.75 µVrms (0.5-100 Hz) input-referred noise, 84 dB CMRR and ±250 mV electrode offset rejection capability. The EEG acquisition system was implemented in a standard 0.18 µm CMOS process, and dissipates less than 700 µW from a 1.8 V supply.
Designing and developing a comfortable and convenient EEG system for daily usage that can provide reliable and robust EEG signal, encompasses a number of challenges. Among them, the most ambitious is the reduction of artifacts due to body movements. This paper studies the effect of head movement artifacts on the EEG signal and on the dry electrode-tissue impedance (ETI), monitored continuously using the imec's wireless EEG headset. We have shown that motion artifacts have huge impact on the EEG spectral content in the frequency range lower than 20 Hz. Coherence and spectral analysis revealed that ETI is not capable of describing disturbances at very low frequencies (below 2 Hz). Therefore, we devised a motion artifact reduction (MAR) method that uses a combination of a band-pass filtering and multi-channel adaptive filtering (AF), suitable for real-time MAR. This method was capable of substantially reducing artifacts produced by head movements.
Development of Wireless EEG system is described. Realtime impedance monitoring and active electrodes are introduced in order to reduce noise from impedance changes caused due to body motion, and to prevent noise from power line interference, respectively. EEG ASICs are developed for the system. The complete system has a low noise (60nV/√Hz) and is packaged in a compact enclosure (38mm x 38mm x 16mm). The system is evaluated against different types of artefacts and possible applications with the system are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.