Nanotechnology has proven to be the greatest multidisciplinary field in the current years with potential applications in agriculture, pollution remediation, environmental sustainability, as well as most recently in pharmaceutical industries. As a result of its physical, chemical, and biological productivity, resistance, and matricular organization at a larger scale, the potential of nanocomposites revealed different sorts of assembling structures via testing. Biosensors are known some specifically promising inventions whereas carbon nanotube, magnetic nanoparticles (NPs), quantum dots, and gold NPs showed capability to repair damaged cells, molecular docking, drug-delivery, and nano-remediation of toxic elements. PEGylated(Poly ethyl glycol amyl gated) redox-responsive nanoscale COFs drug delivery from AgNPs and AuNPs are known to be sun blockers in sunscreen lotions. The emerging trends and yet more to be discovered to bridge the gaps forming in the field of nanotechnology, especially insights into environmental concerns and health issues most importantly the food web which is connected with the well beings of mankind to perform its tasks giving necessary results. The current review detailed emerging role of nanomaterials in human life. Supplementary Information The online version contains supplementary material available at 10.1007/s42247-023-00461-8.
Nanotechnology being undoubtedly an uncut gem over the past few years has been in sighting as a new form of branch with its vigorous discoveries which have led to its divergent evolution giving emergence not only in the pathway of knowledge but also developing technological techniques. The constituting nanoparticles and its versatile properties with dynamic structures have made a major breakthrough in the past few years for its role in biotechnology arising nanobiotechnology, antipollution, renewable polymers, and its biomedical applications. Nanostructure composites forming nanomaterials on the basis of its working are pectin, cellulose, lignin, hyaluronic acid, bacterial cellulose, Arabic gum, and bacterial biosurfactants. In the recent years, it is seen that nanocomposites are giving promising results in medical technology incorporating with useful metal nanoparticles such as silver nanoparticles (AgNPs), gold nanoparticles (AuNPs), diamond nanoparticles, zinc oxide (ZnO), and titanium oxide (TiO). Some useful biomedical applications are in anticancerous, sunscreen, antiageing, and antitumorous. They have shown to be nontoxic at a certain level. Nanoparticle composites have proven with right amount of doping, and experienced techniques have given excellent results. Nanofibers of biodegradable poly(L-lactide) (PLLA)/poly(lactide-co-glycol ide) (PLGA) compounds are used in drug delivery, folate redox-responsive chitosan nanoparticles (FTC-NPs) also as anticancer drug delivery, and mesoporous silica nanoparticles-silver nanoparticles as a tissue growth in vivo processes. The study of a biosynthetic pathway of therapeutic drugs is still much needed. Waste management of renewable nanopolymers are an ultimate goal so that there are less haphazard elements towards the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.