In this paper, a twelve-antenna system is designed for 5G smartphones with metal frames. The system is compact and operates on dual bands within the sub-6 GHz frequency range using multiple-input multiple-output (MIMO) technology. Two sets of six-antenna units are included in the system, arranged in a diagonal mirror-image configuration, and positioned at the center of the circuit board’s longer edges. The profile height of each of the six-antenna units is only 3 mm, and the overall array dimensions are 105 × 3 × 3.1 mm3. A single antenna unit is 15 × 3 × 3.1 mm3 (0.173 λ × 0.035 λ × 0.036 λ, where λ equals the free-space wavelength of 3450 MHz). The arrangement of the antennas in the six-antenna units is parallel, with a 3 mm separation between adjacent antennas. The antenna structure comprises of an inverted L-shaped feed branch and two inverted L-shaped short-circuit branches integrated into part of the metal frame. The proposed array can form multiple resonance paths, achieving dual-band operation at 3300–3600 MHz and 4800–5000 MHz. The measured isolation of this twelve-antenna system within the operating frequency band is over 10 dB, and the measured antenna efficiency is greater than 36%. Therefore, the system is suitable for use in smartphones with high screen-to-body ratios and metal frames.
The study aimed to present a dual-band 5G multi-input multi-output monopole dual-antenna system, which was configured on the upper edge of the display ground plane for laptops. The dual-antenna unit is a 29 × 2 × 3 mm3 three-dimensional structure with two antennas of the same structure and size, consisting of a fed monopole antenna and a shorted monopole antenna. The antennas are arranged 4 mm apart, side by side in the same direction, to form a dual-antenna unit. Such a configuration allows the feeding points of the two antennas to be separated by the shorting point of the shorted monopole antenna, and the shorting point of the low-frequency resonant path (the shorted monopole antenna) of the two antennas to be larger than a quarter of the wavelength of the low frequency with appropriate bending. The strong current will be concentrated near the shorting point of the shorted monopole antenna when the low-frequency mode is excited, and the current flow from the ground to the feeding point of the other antenna will be reduced, achieving the isolation which is better than 10 dB in measurement between the two antennas without adopting any isolation element. The envelope correlation coefficients calculated from the measured complex E-field radiation patterns are all smaller than 0.12, which can cover the 5G dual-band operations of 3300–3600 and 4800–5000 MHz, and the measured antenna efficiencies can reach more than 40%, which are well suited for multiple antenna applications.
A sub 6 GHz dual-band closed-slot multiantenna system for 5G laptops is proposed in this paper. It was installed in a clearance space, with dimensions og 217 × 3 mm2 and 1 mm away from the upper edge of the screen ground plane. The dimensions of the clearance space were the same as those of a multisystem consisting of six antennas. The dimensions of the single closed-slot antenna were 32 × 3 mm2 (0.368 λ × 0.034 λ, where λ equals the free-space wavelength of 3450 MHz. The antenna was coupled to an asymmetric T-shaped feed-in section equipped with a chip capacitor for exciting one-half and full wavelength resonance modes of the closed-slot to encompass sub 6 GHz 3300–3600 MHz and 4800–5000 MHz dual-band operations. The design of the antenna features a long and straight slot to generate the high-order mode of the closed slot in the high-frequency (4800–5000 MHz) band (not the low-frequency (3300–3600 MHz) multiplier band). Its structure is simple, and the width of its slot is only 3 mm. The antennas were arranged to be 5 mm apart in the same direction and in parallel to form a six-antenna system in order to utilize the weak electric fields located at the two closed ends of the closed-slot structure when the closed slot was excited. It showed excellent envelope correlation coefficients (ECCs) and isolation performance without the installation of isolation elements. The measured fractional bandwidth of the antenna was 10.15% and 6.73% at the center frequencies of 3450 MHz and 4900 MHz, respectively. Its measured isolation was always over 10 dB, and the efficiency was between 46% and 76%. The ECCs of the system calculated from the measured complex E-field radiation pattern were all below 0.2, which means that it is ideal for use in laptop devices with a high screen-to-body ratio and a metal back cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.