The near-infrared (NIR) light source is desirable for realtime nondestructive examination applications, which include the analysis of foodstuffs, health monitoring, iris recognition, and infrared cameras. The emission spectra of such an infrared light source should also be as broad as possible for effective performance, in view of the fact that the broad absorption and reflection of light by the organic elements present in foodstuffs and human health fall in the blue and NIR regions of the electromagnetic spectrum, respectively. In this letter, a blue light-emitting diode (LED) excitable super broadband NIR phosphor light source is developed with a high fwhm of 330 nm and radiant flux of 18.2 mW for the first time. The observation of superbroad-band luminescence from two distinct luminescence centers is studied and evidenced by electron paramagnetic resonance, X-ray absorption near-edge structure, steady-state luminescence, and timeresolved luminescence at ambient and high-pressure environments. Finally, the luminescence mechanism is discussed with the relevant configurational coordinate diagrams.
The orange-red emitting phosphors based on M(2)Si(5)N(8):Eu (M = Sr, Ba) are widely utilized in white light-emitting diodes (WLEDs) because of their improvement of the color rendering index (CRI), which is brilliant for warm white light emission. Nitride-based phosphors are adopted in high-performance applications because of their excellent thermal and chemical stabilities. A series of nitridosilicate phosphor compounds, M(2-x)Si(5)N(8):Eu(x) (M = Sr, Ba), were prepared by solid-state reaction. The thermal degradation in air was only observed in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.10, but it did not appear in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.02 and Ba analogue with x = 0.10. This is an unprecedented investigation to study this phenomenon in the stable nitrides. The crystal structural variation upon heating treatment of these compounds was carried out using the in situ XRD measurements. The valence of Eu ions in these compounds was determined by electron spectroscopy for chemical analysis (ESCA) and X-ray absorption near-edge structure (XANES) spectroscopy. The morphology of these materials was examined by transmission electron microscopy (TEM). Combining all results, it is concluded that the origin of the thermal degradation in Sr(2-x)Si(5)N(8):Eu(x) with x = 0.10 is due to the formation of an amorphous layer on the surface of the nitride phosphor grain during oxidative heating treatment, which results in the oxidation of Eu ions from divalent to trivalent. This study provides a new perspective for the impact of the degradation problem as a consequence of heating processes in luminescent materials.
A novel blue phosphor based on phosphate host matrix, KSrPO4 doped with Eu2+, was prepared by solid state reaction. The phosphor invariably emits blue luminescence with a peak wavelength at 424nm under ultraviolet excitation at 360nm. Eu2+-doped KSrPO4 phosphors show higher thermally stable luminescence which was found to be better than commercially available Y3Al5O12:Ce3+ phosphor at temperature higher than 225°C.
Vanadium-containing silicate MCM-41 (V-MCM-41) zeolite and aluminophosphate AFI (VAPO-5) zeolite were synthesized and characterized by spectroscopic techniques. In as-synthesized form, the vanadyl ions (VIVO)2+ were found to be the major vanadium species in the form of atomic dispersion on AFI by EPR and to exist simultaneously with tetrahedral (T d) V5+ in MCM-41 by UV−vis. 29Si MAS NMR investigations suggested that the vanadium ions might attach to MCM-41 through interaction with the silanol groups on the internal wall of hexagonal tubes. The V5+ (in T d) ions are incorporated into the lattice of MCM-41 during synthesis, while the VO2+ (in T d) is the loosely bound V species. The results of Raman spectroscopy indicated that the rodlike aggregation of cationic surfactant (cetyltrimethylammonium bromide, CTAB) was encapsulated in the intrachannel space of synthetic MCM-41 as in an aqueous solution. After calcination and hydration, the V4+ species in as-synthesized V-MCM-41 was totally oxidized to +5 as shown by UV−vis and EPR spectroscopies, and they further aggregated as two-dimensional vanadate chain species that were nonuniformly deposited on the wall of MCM-41 channels as verified by Raman and HREM with EDS spectroscopies, while the V5+ species of synthetic V-MCM-41 remains stable in a tetrahedral coordination. Comparatively, two types of VO2+ ions were observed in as-synthesized VAPO-5 by EPR and they could be oxidized by calcination treatment. The presence of water vapor facilitates the oxidation of (VIVO)2+ and the formation of V2O5 cluster instead of isolated (VVO)3+ species.
A successive preparation of FeCo2O4 nanoflakes arrays on nickel foam substrates is achieved by a simple hydrothermal synthesis method. After 170 cycles, a high capacity of 905 mAh g(-1) at 200 mA g(-1) current density and very good rate capabilities are obtained for lithium-ion battery because of the 2D porous structures of the nanoflakes arrays. The distinctive structural features provide the battery with excellent electrochemical performance. The symmetric supercapacitor on nonaqueous electrolyte demonstrates high specific capacitance of 433 F g(-1) at 0.1 A g(-1) and 16.7 F g(-1) at high scan rate of 5 V s(-1) and excellent cyclic performance of 2500 cycles of charge-discharge cycling at 2 A g(-1) current density, revealing excellent long-term cyclability of the electrode even under rapid charge-discharge conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.